#python #scipy #mathematical-optimization #convex-optimization
Вопрос:
Кто-нибудь знает, насколько полезен LBFGS для оценки матрицы Гессиана в случае многих (gt;10 000) измерений? При запуске реализации scipy в простой квадратичной форме 100D алгоритм, похоже, уже борется. Существуют ли какие-либо общие результаты об особых случаях (т. Е. О доминирующей диагонали), в которых аппроксимированный гессиан является достаточно надежным?
Наконец, мне кажется, что одним из непосредственных недостатков реализации scipy является то, что первоначальная оценка гессиана-это матрица идентичности, которая может привести к более медленной конвергенции. Знаете ли вы, насколько важен этот эффект, т. Е. Как бы повлиял алгоритм, если бы у меня было хорошее представление о том, какими будут диагональные элементы?
Вот два набора примеров графиков для довольно диагональной доминирующей формы, а также для случая с сильными смещениями. Первый показывает исходную матрицу ковариации, а последний дает приближенные результаты с использованием m=50 и m=500.
Code for running the experiment:
import numpy as np from matplotlib import pyplot as plt # Parameters ndims = 100 # Dimensions for our problem a = .2 # Relative importance of non-diagonal elements in covariance m = 500 # Number of updates we allow in lbfgs x0=1*np.random.rand(ndims) # Initial starting point for LBFGS # Generate covariance matrix A = np.matrix([np.random.randn(ndims) np.random.randn(1)*a for i in range(ndims)]) A = A*np.transpose(A) D_half = np.diag(np.diag(A)**(-0.5)) cov= D_half*A*D_half invcov = np.linalg.inv(cov) assert(np.all(np.linalg.eigvals(cov) gt; 0)) # Define quadratic form and its derivative def gauss(x,invcov): res = 0.5*x.T@invcov@x return res[0,0] def gaussgrad(x,invcov): res = np.asarray(x.T@invcov) return res[0] # Put function in lambda shape fgauss = lambda x: gauss(x,invcov=invcov) fprimegauss = lambda x: gaussgrad(x,invcov=invcov) # Run the lbfgs variant and retrieve the inverse Hessian approximation x, f, d, s, y = fmin_l_bfgs_b(func=fgauss,x0=x0,fprime=fprimegauss,m=m,approx_grad=False) invhess = LbfgsInvHess(s, y) # Plot the results plt.imshow(cov) plt.colorbar() plt.show() plt.imshow(invhess.todense(),vmin=np.min(cov),vmax=np.max(cov)) plt.colorbar() plt.show() plt.imshow(invhess.todense()-cov) plt.colorbar() plt.show()
Поскольку scipy не дает векторов, из которых восстанавливается гессиан, нам нужно вызвать незначительно модифицированную функцию (на основе scipy.optimize.lbfgsb.py):
import numpy as np from numpy import array, asarray, float64, zeros from scipy.optimize import _lbfgsb from scipy.optimize.optimize import (MemoizeJac, OptimizeResult, _check_unknown_options, _prepare_scalar_function) from scipy.optimize._constraints import old_bound_to_new from scipy.sparse.linalg import LinearOperator __all__ = ['fmin_l_bfgs_b', 'LbfgsInvHessProduct'] def fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=1e7, pgtol=1e-5, epsilon=1e-8, iprint=-1, maxfun=15000, maxiter=15000, disp=None, callback=None, maxls=20): """ Minimize a function func using the L-BFGS-B algorithm. Parameters ---------- func : callable f(x,*args) Function to minimize. x0 : ndarray Initial guess. fprime : callable fprime(x,*args), optional The gradient of `func`. If None, then `func` returns the function value and the gradient (``f, g = func(x, *args)``), unless `approx_grad` is True in which case `func` returns only ``f``. args : sequence, optional Arguments to pass to `func` and `fprime`. approx_grad : bool, optional Whether to approximate the gradient numerically (in which case `func` returns only the function value). bounds : list, optional ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. Use None or -inf for one of ``min`` or ``max`` when there is no bound in that direction. m : int, optional The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) factr : float, optional The iteration stops when ``(f^k - f^{k 1})/max{|f^k|,|f^{k 1}|,1} lt;= factr * eps``, where ``eps`` is the machine precision, which is automatically generated by the code. Typical values for `factr` are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to `ftol`, which is exposed (instead of `factr`) by the `scipy.optimize.minimize` interface to L-BFGS-B. pgtol : float, optional The iteration will stop when ``max{|proj g_i | i = 1, ..., n} lt;= pgtol`` where ``pg_i`` is the i-th component of the projected gradient. epsilon : float, optional Step size used when `approx_grad` is True, for numerically calculating the gradient iprint : int, optional Controls the frequency of output. ``iprint lt; 0`` means no output; ``iprint = 0`` print only one line at the last iteration; ``0 lt; iprint lt; 99`` print also f and ``|proj g|`` every iprint iterations; ``iprint = 99`` print details of every iteration except n-vectors; ``iprint = 100`` print also the changes of active set and final x; ``iprint gt; 100`` print details of every iteration including x and g. disp : int, optional If zero, then no output. If a positive number, then this over-rides `iprint` (i.e., `iprint` gets the value of `disp`). maxfun : int, optional Maximum number of function evaluations. maxiter : int, optional Maximum number of iterations. callback : callable, optional Called after each iteration, as ``callback(xk)``, where ``xk`` is the current parameter vector. maxls : int, optional Maximum number of line search steps (per iteration). Default is 20. Returns ------- x : array_like Estimated position of the minimum. f : float Value of `func` at the minimum. d : dict Information dictionary. * d['warnflag'] is - 0 if converged, - 1 if too many function evaluations or too many iterations, - 2 if stopped for another reason, given in d['task'] * d['grad'] is the gradient at the minimum (should be 0 ish) * d['funcalls'] is the number of function calls made. * d['nit'] is the number of iterations. See also -------- minimize: Interface to minimization algorithms for multivariate functions. See the 'L-BFGS-B' `method` in particular. Note that the `ftol` option is made available via that interface, while `factr` is provided via this interface, where `factr` is the factor multiplying the default machine floating-point precision to arrive at `ftol`: ``ftol = factr * numpy.finfo(float).eps``. Notes ----- License of L-BFGS-B (FORTRAN code): The version included here (in fortran code) is 3.0 (released April 25, 2011). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal lt;nocedal@ece.nwu.edugt;. It carries the following condition for use: This software is freely available, but we expect that all publications describing work using this software, or all commercial products using it, quote at least one of the references given below. This software is released under the BSD License. References ---------- * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208. * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560. * J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (2011), ACM Transactions on Mathematical Software, 38, 1. """ # handle fprime/approx_grad if approx_grad: fun = func jac = None elif fprime is None: fun = MemoizeJac(func) jac = fun.derivative else: fun = func jac = fprime # build options if disp is None: disp = iprint opts = {'disp': disp, 'iprint': iprint, 'maxcor': m, 'ftol': factr * np.finfo(float).eps, 'gtol': pgtol, 'eps': epsilon, 'maxfun': maxfun, 'maxiter': maxiter, 'callback': callback, 'maxls': maxls} res, s, y = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds, **opts) d = {'grad': res['jac'], 'task': res['message'], 'funcalls': res['nfev'], 'nit': res['nit'], 'warnflag': res['status']} f = res['fun'] x = res['x'] return x, f, d, s, y def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None, disp=None, maxcor=10, ftol=2.2204460492503131e-09, gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000, iprint=-1, callback=None, maxls=20, finite_diff_rel_step=None, **unknown_options): """ Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. Options ------- disp : None or int If `disp is None` (the default), then the supplied version of `iprint` is used. If `disp is not None`, then it overrides the supplied version of `iprint` with the behaviour you outlined. maxcor : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) ftol : float The iteration stops when ``(f^k - f^{k 1})/max{|f^k|,|f^{k 1}|,1} lt;= ftol``. gtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} lt;= gtol`` where ``pg_i`` is the i-th component of the projected gradient. eps : float or ndarray If `jac is None` the absolute step size used for numerical approximation of the jacobian via forward differences. maxfun : int Maximum number of function evaluations. maxiter : int Maximum number of iterations. iprint : int, optional Controls the frequency of output. ``iprint lt; 0`` means no output; ``iprint = 0`` print only one line at the last iteration; ``0 lt; iprint lt; 99`` print also f and ``|proj g|`` every iprint iterations; ``iprint = 99`` print details of every iteration except n-vectors; ``iprint = 100`` print also the changes of active set and final x; ``iprint gt; 100`` print details of every iteration including x and g. callback : callable, optional Called after each iteration, as ``callback(xk)``, where ``xk`` is the current parameter vector. maxls : int, optional Maximum number of line search steps (per iteration). Default is 20. finite_diff_rel_step : None or array_like, optional If `jac in ['2-point', '3-point', 'cs']` the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically. Notes ----- The option `ftol` is exposed via the `scipy.optimize.minimize` interface, but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The relationship between the two is ``ftol = factr * numpy.finfo(float).eps``. I.e., `factr` multiplies the default machine floating-point precision to arrive at `ftol`. """ #_check_unknown_options(unknown_options) m = maxcor pgtol = gtol factr = ftol / np.finfo(float).eps x0 = asarray(x0).ravel() n, = x0.shape if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') # unbounded variables must use None, not -inf, for optimizer to work properly bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds] # LBFGSB is sent 'old-style' bounds, 'new-style' bounds are required by # approx_derivative and ScalarFunction new_bounds = old_bound_to_new(bounds) # check bounds if (new_bounds[0] gt; new_bounds[1]).any(): raise ValueError("LBFGSB - one of the lower bounds is greater than an upper bound.") # initial vector must lie within the bounds. Otherwise ScalarFunction and # approx_derivative will cause problems x0 = np.clip(x0, new_bounds[0], new_bounds[1]) if disp is not None: if disp == 0: iprint = -1 else: iprint = disp sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps, bounds=new_bounds, finite_diff_rel_step=finite_diff_rel_step) func_and_grad = sf.fun_and_grad fortran_int = _lbfgsb.types.intvar.dtype nbd = zeros(n, fortran_int) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] if not maxls gt; 0: raise ValueError('maxls must be positive.') x = array(x0, float64) f = array(0.0, float64) g = zeros((n,), float64) wa = zeros(2*m*n 5*n 11*m*m 8*m, float64) iwa = zeros(3*n, fortran_int) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros(4, fortran_int) isave = zeros(44, fortran_int) dsave = zeros(29, float64) task[:] = 'START' n_iterations = 0 while 1: # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave, maxls) task_str = task.tobytes() if task_str.startswith(b'FG'): # The minimization routine wants f and g at the current x. # Note that interruptions due to maxfun are postponed # until the completion of the current minimization iteration. # Overwrite f and g: f, g = func_and_grad(x) elif task_str.startswith(b'NEW_X'): # new iteration n_iterations = 1 if callback is not None: callback(np.copy(x)) if n_iterations gt;= maxiter: task[:] = 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT' elif sf.nfev gt; maxfun: task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS ' 'EXCEEDS LIMIT') else: break task_str = task.tobytes().strip(b'x00').strip() if task_str.startswith(b'CONV'): warnflag = 0 elif sf.nfev gt; maxfun or n_iterations gt;= maxiter: warnflag = 1 else: warnflag = 2 # These two portions of the workspace are described in the mainlb # subroutine in lbfgsb.f. See line 363. s = wa[0: m*n].reshape(m, n) y = wa[m*n: 2*m*n].reshape(m, n) print(x.shape) # See lbfgsb.f line 160 for this portion of the workspace. # isave(31) = the total number of BFGS updates prior the current iteration; n_bfgs_updates = isave[30] n_corrs = min(n_bfgs_updates, maxcor) inv_hess = LbfgsInvHess(s[:n_corrs], y[:n_corrs]) task_str = task_str.decode() return OptimizeResult(fun=f, jac=g, nfev=sf.nfev, njev=sf.ngev, nit=n_iterations, status=warnflag, message=task_str, x=x, success=(warnflag == 0), hess_inv=inv_hess), s[:n_corrs], y[:n_corrs] class LbfgsInvHess(LinearOperator): """Linear operator for the L-BFGS approximate inverse Hessian. This operator computes the product of a vector with the approximate inverse of the Hessian of the objective function, using the L-BFGS limited memory approximation to the inverse Hessian, accumulated during the optimization. Objects of this class implement the ``scipy.sparse.linalg.LinearOperator`` interface. Parameters ---------- sk : array_like, shape=(n_corr, n) Array of `n_corr` most recent updates to the solution vector. (See [1]). yk : array_like, shape=(n_corr, n) Array of `n_corr` most recent updates to the gradient. (See [1]). References ---------- .. [1] Nocedal, Jorge. "Updating quasi-Newton matrices with limited storage." Mathematics of computation 35.151 (1980): 773-782. """ def __init__(self, sk, yk): """Construct the operator.""" if sk.shape != yk.shape or sk.ndim != 2: raise ValueError('sk and yk must have matching shape, (n_corrs, n)') n_corrs, n = sk.shape super().__init__(dtype=np.float64, shape=(n, n)) self.sk = sk self.yk = yk self.n_corrs = n_corrs self.rho = 1 / np.einsum('ij,ij-gt;i', sk, yk) def _matvec(self, x): """Efficient matrix-vector multiply with the BFGS matrices. This calculation is described in Section (4) of [1]. Parameters ---------- x : ndarray An array with shape (n,) or (n,1). Returns ------- y : ndarray The matrix-vector product """ s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho q = np.array(x, dtype=self.dtype, copy=True) if q.ndim == 2 and q.shape[1] == 1: q = q.reshape(-1) alpha = np.empty(n_corrs) for i in range(n_corrs-1, -1, -1): alpha[i] = rho[i] * np.dot(s[i], q) q = q - alpha[i]*y[i] r = q for i in range(n_corrs): beta = rho[i] * np.dot(y[i], r) r = r s[i] * (alpha[i] - beta) return r def todense(self): """Return a dense array representation of this operator. Returns ------- arr : ndarray, shape=(n, n) An array with the same shape and containing the same data represented by this `LinearOperator`. """ s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho I = np.eye(*self.shape, dtype=self.dtype) Hk = I for i in range(n_corrs): A1 = I - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i] A2 = I - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i] Hk = np.dot(A1, np.dot(Hk, A2)) (rho[i] * s[i][:, np.newaxis] * s[i][np.newaxis, :]) return Hk
Правка: Опечатка в коде.
Комментарии:
1. Может быть, вы сможете объяснить, почему вам нужно аппроксимировать гессиан квадратичной формы. Хорошие крупномасштабные QP-решатели легко доступны и не нуждаются в таких упражнениях. Я бы беспокоился о других вещах.
2. Мне нужно разреженное представление Гессиана довольно беспорядочной и многомерной (d=10^4-10^7) вероятности, которая подается в гамильтонов алгоритм Монте-Карло для выборки из этого распределения. Квадратичная форма здесь просто выбрана для этого примера, чтобы проверить точность LBFGS.
3. Возможно, вам захочется изучить автоматическое дифференцирование, чтобы сгенерировать точный разреженный гессиан.