Ввод 0 последовательного слоя несовместим со слоем: ожидаемая ось -1 входной формы должна иметь значение 8, но полученный ввод с формой (нет, 71)

#python #tensorflow #machine-learning #keras #neural-network

Вопрос:

Я новичок в Нью — Йорке. Кто-нибудь может помочь мне выяснить ошибку этого кода?

 from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import KFold
from numpy import loadtxt
import numpy as np
import pandas as pd

from google.colab import files
uploaded = files.upload()

dataset = loadtxt('mod_dfn.csv', delimiter=',')

X = dataset[:,0:71]
y = dataset[:,71]

kfold = KFold(n_splits=10, shuffle=True)

fold_no = 1
for train, test in kfold.split(X, y):

  model = Sequential()
  model.add(Dense(12, input_dim=8, activation='relu'))
  model.add(Dense(8, activation='relu'))
  model.add(Dense(1, activation='sigmoid'))

  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

  print('------------------------------------------------------------------------')
  print(f'Training for fold {fold_no} ...')

  history = model.fit(X[train], y[train], batch_size=10, epochs=150, verbose=0)

  scores = model.evaluate(X[test], y[test], verbose=0)
  print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%')
  acc_per_fold.append(scores[1] * 100)
  loss_per_fold.append(scores[0])

  fold_no = fold_no   1
 

Я получаю эту ошибку

 ------------------------------------------------------------------------
Training for fold 1 ...
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-16-4ad6d644594b> in <module>()
     17 
     18   # Fit data to model
---> 19   history = model.fit(X[train], y[train], batch_size=10, epochs=150, verbose=0)
     20 
     21   # Generate generalization metrics

9 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    992           except Exception as e:  # pylint:disable=broad-except
    993             if hasattr(e, "ag_error_metadata"):
--> 994               raise e.ag_error_metadata.to_exception(e)
    995             else:
    996               raise

ValueError: in user code:

    /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:853 train_function  *
        return step_function(self, iterator)
    /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:842 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1286 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2849 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3632 _call_for_each_replica
        return fn(*args, **kwargs)
    /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:835 run_step  **
        outputs = model.train_step(data)
    /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:787 train_step
        y_pred = self(x, training=True)
    /usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py:1020 __call__
        input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
    /usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py:254 assert_input_compatibility
        ' but received input with shape '   display_shape(x.shape))

    ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 8 but received input with shape (None, 71)
 

Комментарии:

1. Вы передаете данные с 71 объектом ( X=[:,0:71] ), в то время как в ваших входных объектах первых слоев указано 8 ( input_dim=8 ). Измените значение входного сигнала dim на input_dim=71 .

2. Кроме того, если ваш последний слой имеет 1 вывод в двоичном виде, то последнее измерение Y также должно быть 1. В противном случае вы получите еще одну ошибку. Подводя итог: форма X должна быть такой (n_samples, n_features) и форма Y (n_samples, 1).

3. Спасибо @Kaveh, теперь это работает. Не могли бы вы, пожалуйста, сказать мне, как получить средний балл? Я получаю точность для каждого сгиба.

4. Первый scores = [] . затем в складку для петли scores.append(model.evaluate) , затем снаружи для петли np.mean(scores)

5. как я могу нарисовать кривую ROC и кривую PR для этого примера?

Ответ №1:

Из комментариев

Вы передаете данные с 71 объектами (X=[:,0:71]) , в то время как вы указали в своих первых слоях входные объекты как 8 (input_dim=8) . Измените значение входного сигнала dim на input_dim=71 .

Если ваш последний слой 1 выводится в двоичном виде, то последнее измерение Y также должно быть 1 .

(Перефразировано из Кавеха)