#python #pandas #scikit-learn #seaborn
Вопрос:
Я пытался визуализировать набор данных iris до и после использования StandardScaler с помощью seaborn, но при попытке определить фрейм данных я получил ошибку
Я нашел много похожих вопросов, но ни один из них не объяснял, как преобразовать данные конвейера в фрейм данных
X = DATA.drop(['class'], axis = 'columns')
y = DATA['class'].values
X_train, X_test, y_train, y_test=train_test_split(X,y, test_size=0.20,random_state =42)
gbl_pl=[]
gbl_pl.append(('standard_scaler_gb',
StandardScaler()))
print(gbl_pl)
gblpq=Pipeline((gbl_pl))
scaled_df=gblpq.fit(X_train,y_train)
print(scaled_df.named_steps['standard_scaler_gb'].mean_)
scaled_df =pd.DataFrame(scaled_df,
columns=['petal_length', 'petal_width',
'sepal_length','sepal_width'])
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6, 5))
ax1.set_title('Before Scaling')
sns.kdeplot(X['petal_length'], ax=ax1)
sns.kdeplot(X['petal_width'], ax=ax1)
sns.kdeplot(X['sepal_length'], ax=ax1)
sns.kdeplot(X['sepal_width'], ax=ax1)
ax2.set_title('After Standard Scaler')
sns.kdeplot(scaled_df['petal_length'], ax=ax2)
sns.kdeplot(scaled_df['petal_width'], ax=ax2)
sns.kdeplot(scaled_df['sepal_length'], ax=ax2)
sns.kdeplot(scaled_df['sepal_width'], ax=ax2)
plt.savefig("output73.png")
Ошибка
columns=['petal_length', 'petal_width',
File "/data/user/0/ru.iiec.pydroid3/files/aarch64-linux-android/lib/python3.8/site-packages/pandas/core/frame.py", line 509, in __init__
raise ValueError("DataFrame constructor not properly called!")
ValueError: DataFrame constructor not properly called!
Комментарии:
1. всегда помещайте полное сообщение об ошибке (начинающееся со слова «Обратная связь») в вопрос (не комментарий) в виде текста (не скриншот, не ссылка на внешний портал). Есть и другая полезная информация.
2. @furas Моя оригинальная программа на самом деле очень большая , поэтому обратная связь очень длинная, но я обновил ее со всеми обратными связями, связанными с библиотекой pandas
Ответ №1:
Вы объединяете трансформаторы ( StandardScaler
и Pipeline
) с данными. Возвращаемое значение вашего gblpq.fit(X_train y_train)
объекта-это объект конвейера, а не данные. Чтобы получить масштабированные данные, вы можете использовать метод конвейера transform
(или комбинацию удобства fit_transform
).
...
scaled_df = gblpq.fit_transform(X_train, y_train)
# gblpq is now fitted and contains learned statistics like the means:
print(gblpq.named_steps['standard_scaler_gb'].mean_)
# while scaled_df contains the transformed data as a numpy array
scaled_df = pd.DataFrame(
scaled_df,
columns = [petal_length', petal_width', 'sepal_length', 'sepal_width']
)
...
Комментарии:
1. можете ли вы просто показать пример получения масштабированных данных из конвейера?
2. Сейчас это работает нормально , спасибо за объяснение разницы между gbpq, который содержит статистику, и scaled_df, который содержит данные