#arrays #scala #apache-spark #bigdata
Вопрос:
У меня возникли проблемы, связанные с производительностью, при объединении двойного массива путем поиска в массиве индексов. Что я имею в виду под этим, так это. исходный кадр данных выглядит примерно так:
original Dataframe
| id | prop1 | values |
|----|--------------|-------------------------|
| 1 | [2,5,1,3] | [ 0.1, 0.5, 0.7, 0.8] |
| 2 | [2,1] | [ 0.2, 0.3 ] |
| 1 | [1,5] | [ 0.4, 0.3 ] |
| 2 | [3,2] | [ 0.0, 0.1 ] |
so in the column 2 which is prop1 is an int array having values within range of 1 to 5 but not in a order and there can be missing numbers within array.
Массив Prop1 int похож на индекс значений двойного массива
под этим я подразумеваю, что строка 1 выглядит примерно так, как показано ниже, когда она разнесена
| id | prop1 | values |
|----|-------|--------|
| 1 | 2 | 0.1 |
| 1 | 5 | 0.5 |
| 1 | 1 | 0.7 |
| 1 | 3 | 0.8 |
Последняя проблема,
поэтому мне нужно агрегировать значения двойного массива, заглянув в массив индексов и по идентификатору столбца
таким образом, результат должен быть
| id | prop1 | values |
|----|----------------|--------------------------|
| 1 | [2,5,1,3] | [ 0.1, 0.8, 1.1, 0.8 ] |
| 2 | [2,1,3] | [ 0.3, 0.3, 0.0 ] |
Below code I am using to extract the values by index and pivot right before merging them to array
//dummy dataframe to get the sequence of 5 but the upper end is dynamic value and that can extend till 300k
var df = (1 to 5).toDF("prop1")
//joining original Df by prop1 column
var stgDf = originalDf.join(df,originalDf.col("prop1") === df.col("prop1"),"inner")
// pivoting the values by index
var pivotDf = stgDf.groupBy("id")
.pivot("prop1").agg(first("values"))
// now aggregating the pivoted values by id
var expr = pivtoDf.columns.map(sum(_))
var pivotDf.groupBy("id").agg(expr.head,expr.tail:_*)
//then grouping back into array by id
Это решение я сделал, используя взрыв prop1 и значение, оно работало с несколькими строками, но в реальной задаче массивы обоих столбцов могут превышать 500 тысяч значений каждый, а количество строк на идентификатор может превышать 30 миллионов
Если кто-нибудь может посмотреть и помочь в этом, это было бы здорово. приложение построено в scala с использованием spark 2.4
заранее спасибо
Комментарии:
1. Так в чем же проблема? 30 метров-это ничто. Его большие данные.
2. Также покажите свой код
3. @thebluephantom пожалуйста, проверьте отредактированное сообщение с кодом. Проблема заключается в том, как агрегировать значения двойного массива по индексу, который является массивом по идентификатору столбца. и 30 миллионов на идентификатор, и фрейм данных может состоять из 1000 идентификаторов. Пожалуйста, проверьте отредактированное сообщение и посмотрите, можете ли вы помочь в этом. Спасибо
4. Хорошо, это большие данные. Я посмотрю позже
5. Все еще нуждаешься в помощи?
Ответ №1:
Для версии v3.x, а не для версии v2.4. Обновление, как слишком сложное.
Какие-то серьезные споры о данных!
Вероятно, есть лучшие способы, но они масштабируемы. Может потребоваться много разделов.
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.Column
val arrayStructureData = Seq(
Row(1,List(2,5,1,3),List(0.1, 0.5, 0.7, 0.8)),
Row(2,List(2,1),List(0.2, 0.3)),
Row(1,List(1,5),List(0.4, 0.3)),
Row(2,List(3,2),List(0.0, 0.1))
)
// Just a single StructType for the Row
val arrayStructureSchema = new StructType()
.add("id",IntegerType)
.add("prop1", ArrayType(IntegerType))
.add("values", ArrayType(DoubleType))
val df = spark.createDataFrame(spark.sparkContext.parallelize(arrayStructureData),arrayStructureSchema)
df.printSchema()
df.show()
val df2 = df.withColumn(
"jCols",
zip_with(
col("prop1"),
col("values"),
// Should be a struct really, but...array used. zip_with not available in v2.4!
(left: Column, right: Column) => array(left, right)
)
).drop('prop1).drop('values)
df2.show(false)
df2.printSchema()
val df3 = df2.groupBy("id").agg(collect_list("jCols").as("jCols"))
df3.printSchema()
df3.show(false)
val df4 = df3.select($"id",flatten($"jCols").as("jCols"))
df4.show(false)
df4.printSchema()
val df5 = df4.withColumn("ExjCols", explode($"jCols")).drop("jCols")
df5.show(false)
df5.printSchema()
val df6 = df5.select(col("id"),col("ExjCols")(0).as("prop1"),col("ExjCols")(1).as("values"))
df6.show(false)
df6.printSchema()
val df7 = df6.groupBy("id", "prop1").sum("values").toDF("id","prop1","values")
df7.show(false)
df7.printSchema()
val df8 = df7.withColumn("combined", array($"prop1", $"values"))
df8.show(false)
df8.printSchema()
val df9 = df8.groupBy("id").agg(collect_list("combined").as("propN"))
df9.show(false)
df9.printSchema()
val res = df9.withColumn("prop1",expr("transform(propN, x -> x[0])")).withColumn("values",expr("transform(propN, x -> x[1])")).drop('propN)
res.show(false)
ВОЗВРАТ:
--- -------------------- -------------------------------
|id |prop1 |values |
--- -------------------- -------------------------------
|1 |[2.0, 5.0, 1.0, 3.0]|[0.1, 0.8, 1.1, 0.8] |
|2 |[2.0, 1.0, 3.0] |[0.30000000000000004, 0.3, 0.0]|
--- -------------------- -------------------------------
Понятия не имею, почему точность 0,3000… произошло, но это произошло. Также исправил пример, в нем были некоторые ошибки.
Я могу только предположить, что сейчас это менее популярно, так как для ответа потребовалось некоторое время.