#python-3.x #pytorch #yolov5
Вопрос:
Трассировка (последний последний вызов): Файл «train.py», строка 519, в поезде(hyp, opt, устройство, tb_writer, wandb) Файл «train.py», строка 300, в файле train scaler.scale(потеря).назад () «/home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/torch/_tensor.py», строка 255, в обратном направлении torch.autograd.назад(self, градиент, retain_граф, create_граф, входы=входы) Файл «/главная страница/ec2-пользователь/anaconda3/envs/python3/библиотека/python3.6/сайт-пакеты/факел/автоград/инициализация.py», строка 149, в (allow_unreachable=True, accumulate_grad=True) # разрешение_университетский флаг Ошибка во время выполнения: ошибка cuDNN: CUDNN_STATUS_EXECUTION_FAILED Вы можете попытаться повторить это исключение, используя следующий фрагмент кода. Если это не вызывает ошибку, пожалуйста, укажите свой исходный сценарий повтора при сообщении об этой проблеме.
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.allow_tf32 = True
data = torch.randn([8, 64, 80, 80], dtype=torch.half, device='cuda', requires_grad=True)
net = torch.nn.Conv2d(64, 64, kernel_size=[3, 3], padding=[1, 1], stride=[1, 1], dilation=[1, 1], groups=1)
net = net.cuda().half()
out = net(data)
out.backward(torch.randn_like(out))
torch.cuda.synchronize()
ConvolutionParams
data_type = CUDNN_DATA_HALF
padding = [1, 1, 0]
stride = [1, 1, 0]
dilation = [1, 1, 0]
groups = 1
deterministic = false
allow_tf32 = true
input: TensorDescriptor 0x7efbbc25f670
type = CUDNN_DATA_HALF
nbDims = 4
dimA = 8, 64, 80, 80,
strideA = 409600, 6400, 80, 1,
output: TensorDescriptor 0x7efbbc27c890
type = CUDNN_DATA_HALF
nbDims = 4
dimA = 8, 64, 80, 80,
strideA = 409600, 6400, 80, 1,
weight: FilterDescriptor 0x7efbbc2200c0
type = CUDNN_DATA_HALF
tensor_format = CUDNN_TENSOR_NCHW
nbDims = 4
dimA = 64, 64, 3, 3,
Pointer addresses:
input: 0x7dc4580000
output: 0x7c6c720000
weight: 0x7d4674a000
Additional pointer addresses:
grad_output: 0x7c6c720000
grad_weight: 0x7d4674a000
Backward filter algorithm: 5`