#c #opencv #pytorch #onnx
Вопрос:
Я пытаюсь использовать Deeplabv3.onnx
модель в OpenCV DNN. Модель, которую я использую, была экспортирована из PyTorch. Несмотря на то, что я не получаю никаких ошибок компиляции или выполнения, реализация не дает ожидаемого сегментированного результата. Я думаю, что выходной большой двоичный объект из сети был неправильно декодирован, что привело к неправильным результатам сегментации. Я в основном использую OpenCV DNN Segmentation.cpp пример кода и немного изменен для предварительной обработки входного изображения перед его передачей в сеть. Было бы здорово, если бы вы могли посоветовать или исправить мой код. Заранее спасибо за ваше драгоценное время.
Segmention.cpp Код:
#include <sstream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
std::string keys =
"{ help h | | Print help message. }"
"{ model | deeplabv3.onnx | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ config | <none> | Path to model config file}"
"{ input i | opencv-samples/data/vtest.avi | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ device | 0 | camera device number. }"
"{ initial_width | 256 | Preprocess input image by initial resizing to a specific width.}"
"{ initial_height | 256 | Preprocess input image by initial resizing to a specific height.}"
"{ width | 224 | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ height | 224 | }"
"{ scale | 1.0 | Scale of the input image }"
"{ rgb | true | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ mean | 0.485 0.456 0.406 | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ std | 0.229 0.224 0.225 | Preprocess input image by dividing on a standard deviation.}"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ classes | | Optional path to a text file with names of classes. }"
"{ colors | | Optional path to a text file with colors for an every class. "
"An every color is represented with three values from 0 to 255 in BGR channels order. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation }"
"{ target | 1 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU }";
using namespace cv;
using namespace dnn;
std::vector<std::string> classes;
std::vector<Vec3b> colors;
void showLegend();
void colorizeSegmentation(const Mat amp;score, Mat amp;segm);
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Semantic segmentation deep learning networks using OpenCV.");
int rszWidth = parser.get<int>("initial_width");
int rszHeight = parser.get<int>("initial_height");
float scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean");
Scalar std = parser.get<Scalar>("std");
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
String model = parser.get<String>("model");
String config = parser.get<String>("config");
String framework = parser.get<String>("framework");
int backendId = parser.get<int>("backend");
int targetId = parser.get<int>("target");
#ifdef DNDEBUG
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
#endif
// Open file with classes names.
if (parser.has("classes"))
{
std::string file = parser.get<String>("classes");
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " file " not found");
std::string line;
while (std::getline(ifs, line))
{
classes.push_back(line);
}
}
// Open file with colors.
if (parser.has("colors"))
{
std::string file = parser.get<String>("colors");
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " file " not found");
std::string line;
while (std::getline(ifs, line))
{
std::istringstream colorStr(line.c_str());
Vec3b color;
for (int i = 0; i < 3 amp;amp; !colorStr.eof(); i)
colorStr >> color[i];
colors.push_back(color);
}
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
CV_Assert(!model.empty());
//! [Read and initialize network]
Net net = readNet(model,config);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
//! [Read and initialize network]
// Create a window
static const std::string kWinName = "Deep learning semantic segmentation in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
//! [Open a video file or an image file or a camera stream]
VideoCapture cap;
if (parser.has("input"))
cap.open(parser.get<String>("input"));
else
cap.open(parser.get<int>("device"));
//! [Open a video file or an image file or a camera stream]
// Process frames.
Mat frame, blob;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
waitKey();
break;
}
if (rszWidth != 0 amp;amp; rszHeight != 0)
{
resize(frame, frame, Size(rszWidth, rszHeight),0,0,INTER_NEAREST);
}
//! [Create a 4D blob from a frame]
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
//! [Create a 4D blob from a frame]
// Check std values.
if (std.val[0] != 0.0 amp;amp; std.val[1] != 0.0 amp;amp; std.val[2] != 0.0)
{
// Divide blob by std.
divide(blob, std, blob);
}
//! [Set input blob]
net.setInput(blob);
//! [Set input blob]
//! [Make forward pass]
Mat score = net.forward();
//! [Make forward pass]
Mat segm;
colorizeSegmentation(score, segm);
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST);
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame);
// // Put efficiency information.
std::vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
std::string label = format("Inference time: %.2f ms", t);
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
imshow(kWinName, frame);
if (!classes.empty())
showLegend();
}
return 0;
}
void colorizeSegmentation(const Mat amp;score, Mat amp;segm)
{
const int rows = score.size[2];
const int cols = score.size[3];
const int chns = score.size[1];
if (colors.empty())
{
// Generate colors.
colors.push_back(Vec3b());
for (int i = 1; i < chns; i)
{
Vec3b color;
for (int j = 0; j < 3; j)
color[j] = (colors[i - 1][j] rand() % 256) / 2;
colors.push_back(color);
}
}
else if (chns != (int)colors.size())
{
CV_Error(Error::StsError, format("Number of output classes does not match "
"number of colors (%d != %zu)", chns, colors.size()));
}
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
Mat maxVal(rows, cols, CV_32FC1, score.data);
for (int ch = 1; ch < chns; ch )
{
for (int row = 0; row < rows; row )
{
const float *ptrScore = score.ptr<float>(0, ch, row);
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
float *ptrMaxVal = maxVal.ptr<float>(row);
for (int col = 0; col < cols; col )
{
if (ptrScore[col] > ptrMaxVal[col])
{
ptrMaxVal[col] = ptrScore[col];
ptrMaxCl[col] = (uchar)ch;
}
}
}
}
segm.create(rows, cols, CV_8UC3);
for (int row = 0; row < rows; row )
{
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
for (int col = 0; col < cols; col )
{
ptrSegm[col] = colors[ptrMaxCl[col]];
}
}
}
void showLegend()
{
static const int kBlockHeight = 30;
static Mat legend;
if (legend.empty())
{
const int numClasses = (int)classes.size();
if ((int)colors.size() != numClasses)
{
CV_Error(Error::StsError, format("Number of output classes does not match "
"number of labels (%zu != %zu)", colors.size(), classes.size()));
}
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
for (int i = 0; i < numClasses; i )
{
Mat block = legend.rowRange(i * kBlockHeight, (i 1) * kBlockHeight);
block.setTo(colors[i]);
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
}
namedWindow("Legend", WINDOW_NORMAL);
imshow("Legend", legend);
}
}
Предварительно обученный код python для преобразования модели torchvision в модель Onnx:
import os
import torch
import torch.onnx
from torch.autograd import Variable
from torchvision import models
def get_pytorch_onnx_model(original_model):
# define the directory for further converted model save
onnx_model_path = "models"
# define the name of further converted model
onnx_model_name = "deeplabv3_resnet101.onnx"
# create directory for further converted model
os.makedirs(onnx_model_path, exist_ok=True)
# get full path to the converted model
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
# generate model input
generated_input = Variable(
torch.randn(1, 3, 224, 224)
)
# model export into ONNX format
torch.onnx.export(
original_model,
generated_input,
full_model_path,
verbose=True,
input_names=["input"],
output_names=["output"],
opset_version=11
)
return full_model_path
def main():
# initialize PyTorch ResNet-101 model
original_model = models.segmentation.deeplabv3_resnet101(pretrained=True)
# get the path to the converted into ONNX PyTorch model
full_model_path = get_pytorch_onnx_model(original_model)
print("PyTorch ResNet-100 model was successfully converted: ", full_model_path)
if __name__ == "__main__":
main()