#python #search #graph #a-star #adjacency-list
Вопрос:
Мне нужно рассчитать общую стоимость пути по следующему алгоритму
Этот код находит кратчайший или оптимальный путь между двумя узлами. Этот код написан не мной, на самом деле я пытаюсь изучить информированные алгоритмы поиска и то, как они работают. Ваш интерес будет оценен по достоинству.
Я также приложил изображение графика с фактическими значениями и эвристическими значениями, которые используются в этом коде
from collections import deque
class Graph:
def __init__(self, adjacency_list):
self.adjacency_list = adjacency_list
def get_neighbors(self, v):
return self.adjacency_list[v]
# heuristic function with values for all nodes
def h(self, n):
H = {
'oradea': 380,
'zerind': 374,
'sibiu': 253,
'arad': 366,
'timisoara': 329,
'lugoj': 244,
'mehadia': 241,
'dobreta': 242,
'craiova': 160,
'rimnicu vilcea': 193,
'pitesti': 10,
'fagaras': 176,
'bucharest': 0,
'giurgiu': 77,
'urziceni': 80,
'vaslui': 199,
'lasi': 226,
'neamt': 234,
'hirsova': 151,
'eforie': 161
}
return H[n]
def a_star_algorithm(self, start_node, stop_node):
# open_list is a list of nodes which have been visited, but who's neighbors
# haven't all been inspected, starts off with the start node
# closed_list is a list of nodes which have been visited
# and who's neighbors have been inspected
open_list = set([start_node])
closed_list = set([])
# g contains current distances from start_node to all other nodes
# the default value (if it's not found in the map) is infinity
g = {}
g[start_node] = 0
# parents contains an adjacency map of all nodes
parents = {}
parents[start_node] = start_node
while len(open_list) > 0:
n = None
# find a node with the lowest value of f() - evaluation function
for v in open_list:
if n == None or g[v] self.h(v) < g[n] self.h(n):
n = v;
if n == None:
print('Path does not exist!')
return None
# if the current node is the stop_node
# then we begin reconstruction the path from it to the start_node
if n == stop_node:
reconst_path = []
while parents[n] != n:
reconst_path.append(n)
n = parents[n]
reconst_path.append(start_node)
reconst_path.reverse()
print('Path found: {}'.format(reconst_path))
return reconst_path
# for all neighbors of the current node do
for (m, weight) in self.get_neighbors(n):
# if the current node isn't in both open_list and closed_list
# add it to open_list and note n as it's parent
if m not in open_list and m not in closed_list:
open_list.add(m)
parents[m] = n
g[m] = g[n] weight
# otherwise, check if it's quicker to first visit n, then m
# and if it is, update parent data and g data
# and if the node was in the closed_list, move it to open_list
else:
if g[m] > g[n] weight:
g[m] = g[n] weight
parents[m] = n
if m in closed_list:
closed_list.remove(m)
open_list.add(m)
# remove n from the open_list, and add it to closed_list
# because all of his neighbors were inspected
open_list.remove(n)
closed_list.add(n)
print('Path does not exist!')
return None
# adjacency list (or rather map)
adjacency_list = {
'oradea': [('zerind', 71), ('sibiu', 151)],
'zerind': [('oradea', 71), ('arad', 75)],
'sibiu': [('oradea', 151), ('arad', 140), ('fagaras', 99), ('rimnicu vilcea', 80)],
'arad': [('zerind', 71), ('timisoara', 118), ('sibiu', 140)],
'timisoara': [('arad', 118), ('lugoj', 111)],
'lugoj': [('timisoara', 111), ('mehadia', 70)],
'mehadia': [('lugoj', 70), ('dobreta', 75)],
'dobreta': [('mehadia', 75), ('craiova', 120)],
'craiova': [('dobreta', 120), ('pitesti', 138), ('rimnicu vilcea', 148)],
'rimnicu vilcea': [('craiova', 148), ('sibiu', 80), ('pitesti', 97)],
'pitesti': [('craiova', 138), ('rimnicu vilcea', 97), ('bucharest', 101)],
'fagaras': [('sibiu', 99), ('bucharest', 211)],
'bucharest': [('pitesti', 101), ('fagaras', 211), ('giurgiu', 90), ('urziceni', 85)],
'giurgiu': [('bucharest', 90)],
'urziceni': [('bucharest', 85), ('hirsova', 98), ('vaslui', 142)],
'vaslui': [('urziceni', 142), ('lasi', 92)],
'lasi': [('vaslui', 92), ('neamt', 87)],
'neamt': [('lasi', 87)],
'hirsova': [('urziceni', 98), ('eforie', 86)],
'eforie': [('hirsova', 86)]
}
graph1 = Graph(adjacency_list)
graph1.a_star_algorithm('oradea', 'pitesti')
Ответ №1:
Мне нужно рассчитать общую стоимость пути по следующему алгоритму
Измените этот код
while parents[n] != n:
reconst_path.append(n)
n = parents[n]
Для
while parents[n] != n:
reconst_path.append(n)
next = parents[n]
total_cost = total_cost cost_between( next, n )
n = next
Вам нужно будет закодировать cost_between, чтобы найти два узла в графике и извлечь стоимость.