Как сделать звук трубы (например, Midi-файлы) В python?

#python #audio #midi

Вопрос:

Моя цель-создать искусственный звук трубы и сыграть «пушку» на python.

Вот несколько примеров кода, но я не знаю, как издавать звук трубы.

это образец глокеншпиля

 %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from IPython.display import display, Audio

def ADSR(fs, A, D, S, R, gate, duration):
    A = int(fs * A)
    D = int(fs * D)
    R = int(fs * R)
    gate = int(fs * gate)
    duration = int(fs * duration)
    e = np.zeros(duration)
    if A != 0:
        for n in range(A):
            e[n] = 1.0 - np.exp(-5.0 * n / A)

    if D != 0:
        for n in range(A, gate):
            e[n] = S   (1.0 - S) * np.exp(-5.0 * (n - A) / D)

    else:
        for n in range(A, gate):
            e[n] = S

    if R != 0:
        for n in range(gate, duration):
            e[n]= e[gate - 1] * np.exp(-5.0 * (n - gate   1) / R)

    return e

def glockenspiel(fs, note_number, velocity, gate):
    f0 = 440 * np.power(2, (note_number - 69) / 12)

    number_of_partial = 5

    VCO_A = [0, 0, 0, 0, 0]
    VCO_D = [0, 0, 0, 0, 0]
    VCO_S = [1, 1, 1, 1, 1]
    VCO_R = [0, 0, 0, 0, 0]
    VCO_offset = [f0 * 1, f0 * 2.76, f0 * 5.40, f0 * 8.93, f0 * 13.32]
    VCO_depth = [0, 0, 0, 0, 0]

    VCA_A = [0, 0, 0, 0, 0]
    VCA_D = [2, 0.5, 0.2, 0.2, 0.1]
    VCA_S = [0, 0, 0, 0, 0]
    VCA_R = [2, 0.5, 0.2, 0.2, 0.1]
    VCA_offset = [0, 0, 0, 0, 0]
    VCA_depth = [1, 0.5, 0.4, 0.4, 0.2]

    duration = 2

    length_of_s = int(fs * duration)
    s = np.zeros(length_of_s)

    for i in range(number_of_partial):
        vco = ADSR(fs, VCO_A[i], VCO_D[i], VCO_S[i], VCO_R[i], gate, duration)
        for n in range(length_of_s):
            vco[n] = VCO_offset[i]   vco[n] * VCO_depth[i];

        if np.max(vco) < fs / 2:
            x = np.zeros(length_of_s)
            t = 0;
            for n in range(length_of_s):
                x[n] = np.sin(2 * np.pi * t)
                delta = vco[n] / fs
                t  = delta
                if t >= 1:
                    t -= 1

            vca = ADSR(fs, VCA_A[i], VCA_D[i], VCA_S[i], VCA_R[i], gate, duration)
            for n in range(length_of_s):
                vca[n] = VCA_offset[i]   vca[n] * VCA_depth[i];

            for n in range(length_of_s):
                s[n]  = x[n] * vca[n]

    gain = velocity / 127 / np.max(np.abs(s))
    s *= gain

    return s

score = np.array([[1, 1920, 76, 100, 960],
                  [1, 2880, 74, 100, 960],
                  [1, 3840, 72, 100, 960],
                  [1, 4800, 71, 100, 960],
                  [1, 5760, 69, 100, 960],
                  [1, 6720, 67, 100, 960],
                  [1, 7680, 69, 100, 960],
                  [1, 8640, 71, 100, 960],
                  [2, 1920, 60, 100, 960],
                  [2, 2880, 55, 100, 960],
                  [2, 3840, 57, 100, 960],
                  [2, 4800, 52, 100, 960],
                  [2, 5760, 53, 100, 960],
                  [2, 6720, 48, 100, 960],
                  [2, 7680, 53, 100, 960],
                  [2, 8640, 55, 100, 960]])

division = 480
tempo = 120
number_of_track = 2
end_of_track = 10
number_of_note = score.shape[0]

fs = 44100
length_of_s = int(fs * (end_of_track   2))
track = np.zeros((length_of_s, number_of_track))
s = np.zeros(length_of_s)

for i in range(number_of_note):
    j = int(score[i, 0] - 1)
    onset = (score[i, 1] / division) * (60 / tempo)
    note_number = score[i, 2]
    velocity = score[i, 3]
    gate = (score[i, 4] / division) * (60 / tempo)
    x = glockenspiel(fs, note_number, velocity, gate)
    offset = int(fs * onset)
    length_of_x = len(x)
    for n in range(length_of_x):
        track[offset   n, j]  = x[n]

for j in range(number_of_track):
    for n in range(length_of_s):
        s[n]  = track[n, j]

master_volume = 0.5
s /= np.max(np.abs(s))
s *= master_volume

for n in range(length_of_s):
    s[n] = (s[n]   1.0) / 2.0 * 65536.0
    if s[n] > 65535.0:
        s[n] = 65535.0
    elif s[n] < 0.0:
        s[n] = 0.0;
    s[n] = (s[n]   0.5) - 32768

wavfile.write('p3.wav', fs, s.astype(np.int16))

Audio('p3.wav')
 

а это образец органа-трубы с использованием функции реверберации

 %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from IPython.display import display, Audio

def ADSR(fs, A, D, S, R, gate, duration):
    A = int(fs * A)
    D = int(fs * D)
    R = int(fs * R)
    gate = int(fs * gate)
    duration = int(fs * duration)
    e = np.zeros(duration)
    if A != 0:
        for n in range(A):
            e[n] = 1.0 - np.exp(-5.0 * n / A)

    if D != 0:
        for n in range(A, gate):
            e[n] = S   (1.0 - S) * np.exp(-5.0 * (n - A) / D)

    else:
        for n in range(A, gate):
            e[n] = S

    if R != 0:
        for n in range(gate, duration):
            e[n]= e[gate - 1] * np.exp(-5.0 * (n - gate   1) / R)

    return e

def pipe_organ(fs, note_number, velocity, gate):
    f0 = 440 * np.power(2, (note_number - 69) / 12)

    number_of_partial = 16

    VCO_A = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    VCO_D = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    VCO_S = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    VCO_R = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    VCO_offset = [f0 * 1, f0 * 2, f0 * 3, f0 * 4, f0 * 5, f0 * 6, f0 * 7, f0 * 8, f0 * 9, f0 * 10, f0 * 11, f0 * 12, f0 * 13, f0 * 14, f0 * 15, f0 * 16]
    VCO_depth = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

    VCA_A = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
    VCA_D = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    VCA_S = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    VCA_R = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
    VCA_offset = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    VCA_depth = [1, 1, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.5, 0.5, 0.5, 0.5, 0.3, 0.3, 0.3, 0.3]

    duration = gate   0.1

    length_of_s = int(fs * duration)
    s = np.zeros(length_of_s)

    for i in range(number_of_partial):
        vco = ADSR(fs, VCO_A[i], VCO_D[i], VCO_S[i], VCO_R[i], gate, duration)
        for n in range(length_of_s):
            vco[n] = VCO_offset[i]   vco[n] * VCO_depth[i];

        if np.max(vco) < fs / 2:
            x = np.zeros(length_of_s)
            t = 0;
            for n in range(length_of_s):
                x[n] = np.sin(2 * np.pi * t)
                delta = vco[n] / fs
                t  = delta
                if t >= 1:
                    t -= 1

            vca = ADSR(fs, VCA_A[i], VCA_D[i], VCA_S[i], VCA_R[i], gate, duration)
            for n in range(length_of_s):
                vca[n] = VCA_offset[i]   vca[n] * VCA_depth[i];

            for n in range(length_of_s):
                s[n]  = x[n] * vca[n]

    gain = velocity / 127 / np.max(np.abs(s))
    s *= gain

    return s

def reverb(fs, x):
    length_of_x = len(x)

    d1 = int(fs * 0.03985)
    g1 = 0.871402
    u1 = np.zeros(length_of_x)
    for n in range(length_of_x):
        if n - d1 >= 0:
            u1[n] = x[n - d1]   g1 * u1[n - d1]

    d2 = int(fs * 0.03610)
    g2 = 0.882762
    u2 = np.zeros(length_of_x)
    for n in range(length_of_x):
        if n - d2 >= 0:
            u2[n] = x[n - d2]   g2 * u2[n - d2]

    d3 = int(fs * 0.03327)
    g3 = 0.891443
    u3 = np.zeros(length_of_x)
    for n in range(length_of_x):
        if n - d3 >= 0:
            u3[n] = x[n - d3]   g3 * u3[n - d3]

    d4 = int(fs * 0.03015)
    g4 = 0.901117
    u4 = np.zeros(length_of_x)
    for n in range(length_of_x):
        if n - d4 >= 0:
            u4[n] = x[n - d4]   g4 * u4[n - d4]

    v1 = np.zeros(length_of_x)
    for n in range(length_of_x):
        v1[n] = u1[n]   u2[n]   u3[n]   u4[n]

    d5 = int(fs * 0.005)
    g5 = 0.7
    u5 = np.zeros(length_of_x)
    v2 = np.zeros(length_of_x)
    for n in range(length_of_x):
        if n - d5 >= 0:
            u5[n] = v1[n - d5]   g5 * u5[n - d5]

        v2[n] = u5[n] - g5 * (v1[n]   g5 * u5[n])

    d6 = int(fs * 0.0017)
    g6 = 0.7
    u6 = np.zeros(length_of_x)
    y = np.zeros(length_of_x)
    for n in range(length_of_x):
        if n - d6 >= 0:
            u6[n] = v2[n - d6]   g6 * u6[n - d6]

        y[n] = u6[n] - g6 * (v2[n]   g6 * u6[n])

    return y

score = np.array([[1, 1920, 76, 100, 960],
                  [1, 2880, 74, 100, 960],
                  [1, 3840, 72, 100, 960],
                  [1, 4800, 71, 100, 960],
                  [1, 5760, 69, 100, 960],
                  [1, 6720, 67, 100, 960],
                  [1, 7680, 69, 100, 960],
                  [1, 8640, 71, 100, 960],
                  [2, 1920, 60, 100, 960],
                  [2, 2880, 55, 100, 960],
                  [2, 3840, 57, 100, 960],
                  [2, 4800, 52, 100, 960],
                  [2, 5760, 53, 100, 960],
                  [2, 6720, 48, 100, 960],
                  [2, 7680, 53, 100, 960],
                  [2, 8640, 55, 100, 960]])

division = 480
tempo = 120
number_of_track = 2
end_of_track = 10
number_of_note = score.shape[0]

fs = 44100
length_of_s = int(fs * (end_of_track   2))
track = np.zeros((length_of_s, number_of_track))
s = np.zeros(length_of_s)

for i in range(number_of_note):
    j = int(score[i, 0] - 1)
    onset = (score[i, 1] / division) * (60 / tempo)
    note_number = score[i, 2]
    velocity = score[i, 3]
    gate = (score[i, 4] / division) * (60 / tempo)
    x = pipe_organ(fs, note_number, velocity, gate)
    offset = int(fs * onset)
    length_of_x = len(x)
    for n in range(length_of_x):
        track[offset   n, j]  = x[n]

for j in range(number_of_track):
    for n in range(length_of_s):
        s[n]  = track[n, j]

s = reverb(fs, s)

master_volume = 0.5
s /= np.max(np.abs(s))
s *= master_volume

for n in range(length_of_s):
    s[n] = (s[n]   1.0) / 2.0 * 65536.0
    if s[n] > 65535.0:
        s[n] = 65535.0
    elif s[n] < 0.0:
        s[n] = 0.0;
    s[n] = (s[n]   0.5) - 32768

wavfile.write('p4.wav', fs, s.astype(np.int16))

Audio('p4.wav')
 

According to trumpet sound sample which I get, several amplitude and frequencies are found.

введите описание изображения здесь

введите описание изображения здесь

введите описание изображения здесь

Как я должен создать код для создания звука трубы, например, MIDI-файлов?

Комментарии:

1. Пробовали ли вы создавать синусоидальные волны с амплитудами и частотами, соответствующими вашему анализу Фурье, а затем суммировать их?