#python #pandas #scikit-learn #sklearn-pandas
Вопрос:
Я хотел бы применить масштабирование minmax к столбцам X2 и X3 в dataframe df и добавить столбцы X2_Scale и X3_Scale для каждого месяца.
df = pd.DataFrame({
'Month': [1,1,1,1,1,1,2,2,2,2,2,2,2],
'X1': [12,10,100,55,65,60,35,25,10,15,30,40,50],
'X2': [10,15,24,32,8,6,10,23,24,56,45,10,56],
'X3': [12,90,20,40,10,15,30,40,60,42,2,4,10]
})
Ниже приведен код, который я попробовал, но получил ошибку en.
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
cols = df.columns[2:4]
df[cols 'scale'] = df.groupby('Month')[cols].scaler.fit_transform(df[cols])
Как я могу это сделать? Спасибо.
Ответ №1:
Подход 1
Сгруппируйте и преобразуйте столбцы X2
, X3
используя функцию масштабирования, которая применяет преобразование минимального и максимального масштабирования и возвращает масштабированные значения
def scale(X):
X_ = np.atleast_2d(X)
return pd.DataFrame(scaler.fit_transform(X_), X.index)
df[cols '_scale'] = df.groupby('Month')[cols].apply(scale)
Подход 2
Давайте придерживаться основ и рассчитаем min
max
значения из соответствующих столбцов X2
и X3
для каждой группы , затем применим формулу масштабирования к столбцам, используя рассчитанные значения min-max
g = df.groupby('Month')[cols]
min_, max_ = g.transform('min'), g.transform('max')
df[cols '_scale'] = (df[cols] - min_) / (max_ - min_)
Результат
Month X1 X2 X3 X2_scale X3_scale
0 1 12 10 12 0.153846 0.025000
1 1 10 15 90 0.346154 1.000000
2 1 100 24 20 0.692308 0.125000
3 1 55 32 40 1.000000 0.375000
4 1 65 8 10 0.076923 0.000000
5 1 60 6 15 0.000000 0.062500
6 2 35 10 30 0.000000 0.482759
7 2 25 23 40 0.282609 0.655172
8 2 10 24 60 0.304348 1.000000
9 2 15 56 42 1.000000 0.689655
10 2 30 45 2 0.760870 0.000000
11 2 40 10 4 0.000000 0.034483
12 2 50 56 10 1.000000 0.137931