Ошибка значения: Слой ожидает 2 ввода(ов), но он получил 1 входной тензор при обучении CNN

#python #tensorflow #keras #deep-learning #conv-neural-network

Вопрос:

Я новичок в tensorflow том , чтобы пытаться создать сиамский CNN, аналогичный тому, что сделано в этом руководстве.
Моя модель построена с использованием базовой модели, которая затем дважды загружается двумя разными изображениями, проходящими через одну и ту же сеть.
Это код для построения сети:

 class BaseModel(Model):

  def __init__(self, base_network):
    super(BaseModel, self).__init__()
    self.network = base_network
  
  def call(self, inputs):
    print(inputs)
    return self.network(inputs)

def get_base_model():
  inputs = tf.keras.Input(shape=INPUT)

  conv2d_1 = layers.Conv2D(name='seq_1', filters=64, 
            kernel_size=20, 
            activation='relu')(inputs)
  maxpool_1 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_1)

  conv2d_2 = layers.Conv2D(filters=128, 
            kernel_size=20, 
            activation='relu')(maxpool_1)
  maxpool_2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_2)

  conv2d_3 = layers.Conv2D(filters=128, 
            kernel_size=20, 
            activation='relu')(maxpool_2)
  maxpool_3 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_3)

  conv2d_4 = layers.Conv2D(filters=256, 
            kernel_size=10, 
            activation='relu')(maxpool_3)

  flatten_1 = layers.Flatten()(conv2d_4)
  outputs = layers.Dense(units=4096,
                        activation='sigmoid')(flatten_1)
  
  model = Model(inputs=inputs, outputs=outputs)

  return model
 

Затем я создаю сиамскую сеть, используя предыдущий метод, подобный этому:

 INPUT = (250, 250, 3)

def get_siamese_model():
  left_input = layers.Input(name='img1', shape=INPUT)
  right_input = layers.Input(name='img2', shape=INPUT)
  
  base_model = get_base_model()
  base_model = BaseModel(base_model)

  # bind the two input layers to the base network
  left = base_model(left_input)
  right = base_model(right_input)

  # build distance measuring layer
  l1_lambda = layers.Lambda(lambda tensors:abs(tensors[0] - tensors[1]))
  l1_dist = l1_lambda([left, right])

  pred = layers.Dense(1,activation='sigmoid')(l1_dist)

  return Model(inputs=[left_input, right_input], outputs=pred)

class SiameseNetwork(Model):

  def __init__(self, siamese_network):
    super(SiameseNetwork, self).__init__()
    self.siamese_network = siamese_network
  
  def call(self, inputs):
    print(inputs)
    return self.siamese_network(inputs)
 

Затем я тренирую сеть, передавая tf.data.Dataset ей:

 net.fit(x=train_dataset, epochs=10 ,verbose=True)
 

train_dataset имеет тип:

<Предварительно заданные формы набора: ((Нет, 250, 250, 3), (Нет, 250, 250, 3)), типы: (tf.float32, tf.float32)>

Похоже, что форма входных данных определена хорошо, но я все еще сталкиваюсь с ошибкой:

 ValueError                                Traceback (most recent call last)
<ipython-input-144-6c5586e1e205> in <module>()
----> 1 net.fit(x=train_dataset, epochs=10 ,verbose=True)

9 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1098                 _r=1):
   1099               callbacks.on_train_batch_begin(step)
-> 1100               tmp_logs = self.train_function(iterator)
   1101               if data_handler.should_sync:
   1102                 context.async_wait()

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    826     tracing_count = self.experimental_get_tracing_count()
    827     with trace.Trace(self._name) as tm:
--> 828       result = self._call(*args, **kwds)
    829       compiler = "xla" if self._experimental_compile else "nonXla"
    830       new_tracing_count = self.experimental_get_tracing_count()

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    869       # This is the first call of __call__, so we have to initialize.
    870       initializers = []
--> 871       self._initialize(args, kwds, add_initializers_to=initializers)
    872     finally:
    873       # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    724     self._concrete_stateful_fn = (
    725         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 726             *args, **kwds))
    727 
    728     def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2967       args, kwargs = None, None
   2968     with self._lock:
-> 2969       graph_function, _ = self._maybe_define_function(args, kwargs)
   2970     return graph_function
   2971 

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   3359 
   3360           self._function_cache.missed.add(call_context_key)
-> 3361           graph_function = self._create_graph_function(args, kwargs)
   3362           self._function_cache.primary[cache_key] = graph_function
   3363 

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3204             arg_names=arg_names,
   3205             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206             capture_by_value=self._capture_by_value),
   3207         self._function_attributes,
   3208         function_spec=self.function_spec,

/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    988         _, original_func = tf_decorator.unwrap(python_func)
    989 
--> 990       func_outputs = python_func(*func_args, **func_kwargs)
    991 
    992       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    632             xla_context.Exit()
    633         else:
--> 634           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
    635         return out
    636 

/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    975           except Exception as e:  # pylint:disable=broad-except
    976             if hasattr(e, "ag_error_metadata"):
--> 977               raise e.ag_error_metadata.to_exception(e)
    978             else:
    979               raise

ValueError: in user code:

    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:805 train_function  *
        return step_function(self, iterator)
    <ipython-input-125-de3a74f810c3>:9 call  *
        return self.siamese_network(inputs)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py:998 __call__  **
        input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/input_spec.py:207 assert_input_compatibility
        ' input tensors. Inputs received: '   str(inputs))

    ValueError: Layer model_16 expects 2 input(s), but it received 1 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, 250, 250, 3) dtype=float32>]
 

Я понимаю, что model_16 это базовая модель, однако я не могу понять, что я здесь делаю не так.

Комментарии:

1. почему вы смешиваете подклассный и функциональный API, который здесь выглядит ненужным?

2. Вы имеете в виду, что я мог бы просто построить модель, используя функциональный API внутри подкласса?

3. Я думаю, что вам здесь не нужны подклассы. В посте, за которым вы следуете, они переопределяют train_step метод, вероятно, поэтому они это делают.

Ответ №1:

Следуя комментарию, вот возможное решение только с функциональным API. Обратите внимание, что вы должны отметить использование sigmoid модели встраивания ( get_base_model ).

 # base model 
def get_base_model():
    inputs = tf.keras.Input(shape=INPUT)
    
    conv2d_1 = layers.Conv2D(name='seq_1', filters=64, 
            kernel_size=20, 
            activation='relu')(inputs)
    maxpool_1 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_1)

    conv2d_2 = layers.Conv2D(filters=128, 
            kernel_size=20, 
            activation='relu')(maxpool_1)
    maxpool_2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_2)

    conv2d_3 = layers.Conv2D(filters=128, 
            kernel_size=20, 
            activation='relu')(maxpool_2)
    maxpool_3 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_3)

    conv2d_4 = layers.Conv2D(filters=256, 
            kernel_size=10, 
            activation='relu')(maxpool_3)

    flatten_1 = layers.Flatten()(conv2d_4)
    outputs = layers.Dense(units=4096)(flatten_1)
    
    model = Model(inputs=inputs, outputs=outputs)
    return model
 

Сиамская сеть

 INPUT = (250, 250, 3)

def get_siamese_model():
    # two input 
    left_input  = layers.Input(name='img1', shape=INPUT)
    right_input = layers.Input(name='img2', shape=INPUT)

    # one model
    base_model = get_base_model()

    # bind the two input layers to the base network
    left  = base_model(left_input)
    right = base_model(right_input)

    # build distance measuring layer
    l1_lambda = layers.Lambda(lambda tensors:abs(tensors[0] - tensors[1]))
    l1_dist   = l1_lambda([left, right])

    pred = layers.Dense(1,activation='sigmoid')(l1_dist)
    return Model(inputs=[left_input, right_input], outputs=pred)
 

Сборка и проверка

 net = get_siamese_model()
# net.summary()
# tf.keras.utils.plot_model(net)
 

Тест

 import numpy as np 

A2_i = np.random.randint(0, 256, size=(2, 250, 250, 3)).astype("float32")
A2_j = np.random.randint(0, 256, size=(2, 250, 250, 3)).astype("float32")

net([A2_i, A2_j]).numpy()
array([[0.4786834],
       [0.484886 ]], dtype=float32)
 

Комментарии:

1. Вы правы, что здесь не требуется никаких подклассов, однако сейчас я опубликовал ответ на свою проблему…

Ответ №2:

Я разобрался в этой проблеме. При передаче tf.data.Dataset в качестве x tensorflow метода по fit умолчанию он ожидает получения как входных, так и целевых данных в одном и том же Dataset .
Поэтому при передаче набора данных с двумя входными изображениями первое было передано в фактическую сеть, а второе было опущено и обработано как true_y (целевое) значение.

Исправление в этом случае, когда сеть ожидает n входных данных, состоит в том , чтобы иметь набор данных, в котором каждая запись имеет длину 2 , где первая-это tuple длина n , представляющая входные данные для сети, а второе значение-это true_y , например 0 or 1 , в задаче двоичной классификации.

Приведенное выше объяснение в моем случае сводится к следующей структуре train_dataset , validation_dataset и test_dataset .

<Формы предварительного набора данных: (((Нет, 250, 250, 3), (Нет, 250, 250, 3)), (Нет,)), типы: ((tf.float32, tf.float32), tf.int32)>