#python #pytorch #bert-language-model
Вопрос:
я пытаюсь работать с Бертом, но я продолжаю получать ошибку RuntimeError: Ожидаемый тензор для аргумента № 1 «индексы» должен иметь скалярный тип Long; но получил факел.Вместо этого intensor (при проверке аргументов для встраивания). Я не совсем понимаю, что я делаю не так на данном этапе. это обратная связь, которую я получаю:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-89-dcab947253f7> in <module>
27
28 # Forward pass
---> 29 loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
30 train_loss_set.append(loss.item())
31 # Backward pass
~Anaconda3libsite-packagestorchnnmodulesmodule.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~Anaconda3libsite-packagespytorch_pretrained_bertmodeling.py in forward(self, input_ids, token_type_ids, attention_mask, labels)
987
988 def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
--> 989 _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
990 pooled_output = self.dropout(pooled_output)
991 logits = self.classifier(pooled_output)
~Anaconda3libsite-packagestorchnnmodulesmodule.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~Anaconda3libsite-packagespytorch_pretrained_bertmodeling.py in forward(self, input_ids, token_type_ids, attention_mask, output_all_encoded_layers)
728 extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
729
--> 730 embedding_output = self.embeddings(input_ids, token_type_ids)
731 encoded_layers = self.encoder(embedding_output,
732 extended_attention_mask,
~Anaconda3libsite-packagestorchnnmodulesmodule.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~Anaconda3libsite-packagespytorch_pretrained_bertmodeling.py in forward(self, input_ids, token_type_ids)
265 token_type_ids = torch.zeros_like(input_ids)
266
--> 267 words_embeddings = self.word_embeddings(input_ids)
268 position_embeddings = self.position_embeddings(position_ids)
269 token_type_embeddings = self.token_type_embeddings(token_type_ids)
~Anaconda3libsite-packagestorchnnmodulesmodule.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~Anaconda3libsite-packagestorchnnmodulessparse.py in forward(self, input)
124 return F.embedding(
125 input, self.weight, self.padding_idx, self.max_norm,
--> 126 self.norm_type, self.scale_grad_by_freq, self.sparse)
127
128 def extra_repr(self) -> str:
~Anaconda3libsite-packagestorchnnfunctional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
1850 # remove once script supports set_grad_enabled
1851 _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> 1852 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
1853
1854
RuntimeError: Expected tensor for argument #1 'indices' to have scalar type Long; but got torch.IntTensor instead (while checking arguments for embedding)
Код, который я использую, следующий:
train_loss_set = []
# Number of training epochs (authors recommend between 2 and 4)
epochs = 10
# trange is a tqdm wrapper around the normal python range
for _ in trange(epochs, desc="Epoch"):
# Training
# Set our model to training mode (as opposed to evaluation mode)
model.train()
# Tracking variables
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
# Train the data for one epoch
for step, batch in enumerate(train_dataloader):
# Add batch to CPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Clear out the gradients (by default they accumulate)
optimizer.zero_grad()
# Forward pass
loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
train_loss_set.append(loss.item())
# Backward pass
loss.backward()
# Update parameters and take a step using the computed gradient
optimizer.step()
# Update tracking variables
tr_loss = loss.item()
nb_tr_examples = b_input_ids.size(0)
nb_tr_steps = 1
print("Train loss: {}".format(tr_loss/nb_tr_steps))
# Validation
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to cpu
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
eval_accuracy = tmp_eval_accuracy
nb_eval_steps = 1
print("Validation Accuracy: {}".format(eval_accuracy/nb_eval_steps))