#python #pandas #numpy #vectorization #knn
Вопрос:
При реализации алгоритма KNN произошла следующая ошибка. Я посмотрел его и выяснил, что нам нужно использовать векторизацию, но даже если мы ее применим, ошибки продолжают возникать. Можно ли использовать векторизацию для массивов? Я хочу знать, как устранить ошибку. Я умоляю тебя.
*Test Data Index is 0 / Traceback (most recent call last):
File "C:UserssimjaPycharmProjectspythonProject1main.py", line 103, in <module>
print("Computed Class is", m_knn.WeightedMajorityVote(m_knn.GetNearestList(GaitData(gait_dt['data'], gait_dt['target']),k)), end = ' / ')
File "C:UserssimjaPycharmProjectspythonProject1main.py", line 27, in GetNearestList
distanceDataList.append(self.CalculateDistance(self.gaits[i], gait))
File "C:UserssimjaPycharmProjectspythonProject1main.py", line 11, in CalculateDistance
gx = math.pow(gait1.GyroscopeX - gait2.GyroscopeX, 2)
TypeError: only size-1 arrays can be converted to Python scalars*
class m_KNN:
gaits = [] # gait's list
def CalculateDistance(self, gait1, gait2): # Get gait <-> gait distance
gx = math.pow(gait1.GyroscopeX - gait2.GyroscopeX, 2)
gy = math.pow(gait1.GyroscopeY - gait2.GyroscopeY, 2)
gz = math.pow(gait1.GyroscopeZ - gait2.GyroscopeZ, 2)
ax = math.pow(gait1.AccelerometerX - gait2.AccelerometerX, 2)
ay = math.pow(gait1.AccelerometerY - gait2.AccelerometerY, 2)
az = math.pow(gait1.AccelerometerZ - gait2.AccelerometerZ, 2)
mx = math.pow(gait1.MagnetometerX - gait2.MagnetometerX, 2)
my = math.pow(gait1.MagnetometerY - gait2.MagnetometerY, 2)
mz = math.pow(gait1.MagnetometerZ - gait2.MagnetometerZ, 2)
return math.sqrt(gx gy gz ax ay az mx my mz)
def GetNearestList(self, gait, k): # Get the nearest data list number of K from test data
distanceDataList = []
nearestDataList = []
for i in range(len(self.gaits)): # for making test data <-> training data's distance list
distanceDataList.append(self.CalculateDistance(self.gaits[i], gait))
for i in range(k): # for making the NearestDataList number of K
nearestDataList.append(distanceDataList.index(min(distanceDataList)))
distanceDataList.remove(min(distanceDataList))
return nearestDataList
def WeightedMajorityVote(self, answer): # Get test data's class by weighted-majority-vote
targetClassList = []
bias = -0.5 #편향
weight0 = 0.2 # 가중치
weight1 = 0.3
weight2 = 0.5
length = len(answer)
for i in range(length):
targetClassList.append(self.gaits[answer[i]].targetClass)
setosaCount = targetClassList[:length//3].count(0) * weight2 targetClassList[length//3:2*length//3].count(0) * weight1 targetClassList[2*length//3:].count(0) * weight0 bias
versicolorCount = targetClassList[:length//3].count(1) * weight2 targetClassList[length//3:2*length//3].count(1) * weight1 targetClassList[2*length//3:].count(1) * weight0 bias
virginicaCount = targetClassList[:length//3].count(2) * weight2 targetClassList[length//3:2*length//3].count(2) * weight1 targetClassList[2*length//3:].count(2) * weight0 bias
maxIdx = 0
if(versicolorCount > setosaCount and versicolorCount > virginicaCount) :
maxIdx = 1
if(virginicaCount > setosaCount and virginicaCount > versicolorCount):
maxIdx = 2
return targetClassList[maxIdx]
class GaitData:
def __init__(self, data, targetClass):
self.GyroscopeX = data[0]
self.GyroscopeY = data[1]
self.GyroscopeZ = data[2]
self.AccelerometerX = data[3]
self.AccelerometerY = data[4]
self.AccelerometerZ = data[5]
self.MagnetometerX = data[6]
self.MagnetometerY = data[7]
self.MagnetometerZ = data[8]
self.targetClass = targetClass
m_knn = m_KNN()
gait = pd.concat([pd.read_csv('normal_LX.csv', usecols=[1,2,3,4,5,6,7,8])])
target = pd.concat([pd.read_csv('normal_LX.csv', usecols=[2])])
gait_dt = {'data': np.array(gait, dtype=object).astype(np.float64), 'target': np.array(target), 'target_names': ['정상', '비정상']}
k = 3
for iter in range(len(target)):
if (iter % 15 == 0 and iter != 0):
None
else:
m_knn.gaits.append(GaitData(gait_dt['data'], gait_dt['target']))
print("nWeighted Majority Votenn")
for t in range(10):
iter = 15 * (t 1) - 1
print("Test Data Index is", t, end=' / ')
print("Computed Class is", m_knn.WeightedMajorityVote(m_knn.GetNearestList(GaitData(gait_dt['data'], gait_dt['target']),k)), end = ' / ')
print("True Class is", gait_dt.target_names[target[iter]], "n")
Комментарии:
1.
math
функции работают только со скалярами, одиночными значениями, а не с массивами.