#apache-spark #pyspark #apache-spark-sql #higher-order-functions
#apache-spark #pyspark #apache-spark-sql #функции более высокого порядка
Вопрос:
У меня есть две таблицы:
entities
id | i | sources | name
----------------------------------------------------
1a | 0 | {"UK/bla": 1, "FR/blu": 2} | "mae"
1a | 1 | {"UK/bla": 1, "IT/bli": 2} | "coulson"
source_mapping
source_name | source_metadata
-----------------------------------------------------------------------------------------
"UK/bla" | {"source_name": "UK/bla", "description": "this is a description"}
"FR/blu" | {"source_name": "FR/blu", "description": "ceci est une description"}
"IT/bli" | {"source_name": "IT/bli", "description": "questa è una descrizione"}
Что я хотел бы сделать, так это добавить столбец a в мою таблицу сущностей типа:
id | i | sources | name | metadata
---------------------------------------------------------------
1a | 0 | [{"UK/bla": 1}, {"FR/blu": 2}] | ... | [{"source_name": "UK/bla", "description": "this is a description"}, {"source_name": "FR/blu", "description": "ceci est une description"}]
1a | 1 | [{"UK/bla": 1}, {"IT/bli": 2}] | ... | [{"source_name": "UK/bla", "description": "this is a description"}, {"source_name": "IT/bli", "description": "questa è una descrizione"}]
Я нашел способ сделать это, выполнив:
entities_sources_exploded = (entities.select(F.col("id"),
F.col("i"),
F.explode(F.col("sources")))
.withColumnRenamed("key", "source_name")
.drop("value")) # get rid of it
entities_sources_exploded_with_metadata = (entities_sources_exploded
.join(sources_mapping,
entities_sources_exploded.source_name == sources_mapping.source_name,
"left"))
entities_with_metadata = (entities_sources_exploded_with_metadata
.groupBy(F.col("id"), F.col("i"))
.agg(F.collect_list("source_metadata").alias("metadata")))
И это работает — но у меня есть подлые подозрения, что есть способы сделать это без взрыва и работы с HOF в spark SQL, завернутом в an .expr()
— я бы хотел посмотреть, как кто-то более свободно, чем я, решит эту проблему.
Ответ №1:
Я думаю, это должно сработать:
import pandas as pd
# Setup data
data1 = pd.DataFrame({
"id": ["1a", "1a"],
"i": [0, 1],
"sources": [{"UK/bla": 1, "FR/blu": 2}, {"UK/bla": 1, "IT/bli": 2}],
"name": ["mae", "coulson"]
})
df1 = spark.createDataFrame(data1)
data2 = pd.DataFrame({
"source_name": ["UK/bla", "FR/blu", "IT/bli"],
"source_metadata": [
{"source_name": "UK/bla", "description": "this is a description"},
{"source_name": "FR/blu", "description": "ceci est une description"},
{"source_name": "IT/bli", "description": "questa è una descrizione"}
]
})
df2 = spark.createDataFrame(data2)
# Create temp tables and execute SQL
df1.registerTempTable("df1")
df2.registerTempTable("df2")
query = """
SELECT
temp.id,
temp.i,
COLLECT_LIST(source) AS sources,
temp.name,
COLLECT_LIST(source_metadata) AS metadata
FROM (
SELECT
*,
map(key, value) AS source
FROM (
SELECT
df1.id,
df1.i,
df1.name,
EXPLODE(df1.sources)
FROM df1
) AS df1_exploded
JOIN df2
ON df2.source_name = df1_exploded.key
) AS temp
GROUP BY temp.id, temp.i, temp.name
"""
result = spark.sql(query)
result.show(5)
Комментарии:
1. красиво — спасибо!