#r #dataframe #loops
#r #фрейм данных #циклы
Вопрос:
У меня есть совокупность с N наблюдениями, подобными этому
*Y X ID
…… ….. 1
…… … 2
…… ……. 3
…… ….. .
……. …….. .*
Я сгенерировал этот код для взятия разных выборок и применил к ним линейную модель:
N=1000
X=rnorm(N,2,1)
Y=8*X rnorm(N,0,1)
POP=cbind(X,Y)
POPULATION=as.data.frame(POP)
POPULATION$ID=seq.int(nrow(population))
J=10
n=100
PREDICTIONS=matrix(,nrow = n,ncol=J)
for (i in 1:J) {
SAMPLE=POPULATION[sample(nrow(POPULATION),size = n,replace = F),]
Y1=SAMPLE$Y
X1=SAMPLE$X
LM=lm(Y1~X1)
PREDICTIONS[,i]=as.array(predict(LM,SAMPLE))
}
Я хочу объединить прогнозы и доверительные интервалы с кадром данных совокупности. То есть я хочу что-то вроде этого :
ID Estimate1 LW UP Estimate2 LW UP … …. ….
1 NA NA NA 8.25 4.3 5.7 NA NA NA
2 3.5 1.2 4.2 NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA NA ... ... . .
4 7.8 4.2 10.5 7.14 6.2 8.1 NA NA NA .......
5 . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .*
Как я могу настроить цикл, чтобы получить что-то подобное?
Комментарии:
1. вы уверены, что хотите применить predict только к выборке, а не ко всей совокупности?
predict(LM, POPULATION)
?
Ответ №1:
Вот как вы могли бы это сделать.
set.seed(2) # with a seed your example is reproducible!
N <- 1000
X <- rnorm(N,2,1)
Y <- 8*X rnorm(N,0,1)
POPULATION <- data.frame(X = X, Y = Y, ID = seq_len(N))
J <- 10
n <- 100
for (i in 1:J) {
rows <- sample(nrow(POPULATION), size = n, replace = FALSE)
SAMPLE <- POPULATION[rows,]
LM <- lm(Y~X, SAMPLE)
PR <- predict(LM, SAMPLE, interval = "confidence")
cols <- paste(colnames(PR), i, sep = "_")
POPULATION[rows,cols] <- asplit(PR,2)
}
head(POPULATION)[1:9]
#> X Y ID fit_1 lwr_1 upr_1 fit_2 lwr_2 upr_2
#> 1 1.1030855 9.290884 1 NA NA NA NA NA NA
#> 2 2.1848492 18.433460 2 NA NA NA NA NA NA
#> 3 3.5878453 27.755556 3 NA NA NA NA NA NA
#> 4 0.8696243 6.995558 4 NA NA NA NA NA NA
#> 5 1.9197482 14.527104 5 NA NA NA 15.57564 15.38493 15.76634
#> 6 2.1324203 17.616534 6 NA NA NA NA NA NA
Однако, подобным образом, вы получите много недостающих данных POPULATION
.
Вы уверены, что не хотите применять predict
ко всем данным?
Вот так:
for (i in 1:J) {
rows <- sample(nrow(POPULATION), size = n, replace = FALSE)
SAMPLE <- POPULATION[rows,]
LM <- lm(Y~X, SAMPLE)
PR <- predict(LM, POPULATION, interval = "confidence")
cols <- paste(colnames(PR), i, sep = "_")
POPULATION[,cols] <- asplit(PR,2)
}
head(POPULATION)[1:9]
#> X Y ID fit_1 lwr_1 upr_1 fit_2 lwr_2 upr_2
#> 1 1.1030855 9.290884 1 8.782858 8.498869 9.066846 9.018652 8.741132 9.296172
#> 2 2.1848492 18.433460 2 17.395832 17.181911 17.609754 17.704131 17.516264 17.891998
#> 3 3.5878453 27.755556 3 28.566451 28.186621 28.946281 28.968784 28.610305 29.327263
#> 4 0.8696243 6.995558 4 6.924046 6.606492 7.241600 7.144193 6.829553 7.458833
#> 5 1.9197482 14.527104 5 15.285106 15.072070 15.498142 15.575636 15.384929 15.766343
#> 6 2.1324203 17.616534 6 16.978395 16.765726 17.191063 17.283179 17.096002 17.470357
Комментарии:
1. Спасибо, миллион, это именно то, что я хотел