Tidymodels: отменить тестирование значений RMSE и RSQ для наиболее подходящей модели из TIbble после проведения 10-кратной перекрестной проверки в R

#r #machine-learning #ggplot2 #regression #tidymodels

#r #машинное обучение #ggplot2 #регрессии #tidymodels

Вопрос:

Обзор

Я создал четыре модели, используя пакет tidymodels с идентификатором фрейма данных (см. R-код ниже):

  1. Общая линейная модель (glm)
  2. Упакованного дерева
  3. Случайный лес
  4. Усиленные деревья

Фрейм данных содержит три предиктора:

  1. года (числового)
  2. Месяца (фактор)
  3. Дней (числовых)

Зависимой переменной является частота (числовая)

Цель

Моя цель — отменить тестирование наиболее подходящих моделей (т.Е. glm, упакованного дерева, случайного леса, усиленных деревьев) для отображения показателей RMSE и RSQ после проведения 10-кратной перекрестной проверки из объекта tibble, созданного с использованием функции fit_samples() .

Пример tibble

 # Resampling results
# 10-fold cross-validation 
# A tibble: 10 x 5
   splits         id     .metrics         .notes           .predictions    
   <list>         <chr>  <list>           <list>           <list>          
 1 <split [24/3]> Fold01 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 2 <split [24/3]> Fold02 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 3 <split [24/3]> Fold03 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 4 <split [24/3]> Fold04 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 5 <split [24/3]> Fold05 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 6 <split [24/3]> Fold06 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 7 <split [24/3]> Fold07 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
 8 <split [25/2]> Fold08 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [2 × 3]>
 9 <split [25/2]> Fold09 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [2 × 3]>
10 <split [25/2]> Fold10 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [2 × 3]>
 

Я хотел бы визуализировать наилучшую модель (т.Е. glm, упакованное дерево, случайный лес, увеличенные деревья), создав графики, где истинное значение находится на оси x, а прогнозируемое значение — на оси y, как показано в руководстве и на рисунке ниже.

Учебник

https://www.tmwr.org/performance.html

Когда я пытаюсь предсказать подходящую модель по тестовым данным с помощью функции predict(), я продолжаю получать эти сообщения об ошибках при попытке 1 и попытке 2:-

Сообщение об ошибке — попытка 1

  Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "c('resample_results', 'tune_results', 'tbl_df', 'tbl', 'data.frame')"
 

Сообщение об ошибке — попытка 2

 Error: `...` is not empty.

We detected these problematic arguments:
* `..1`

These dots only exist to allow future extensions and should be empty.
Did you misspecify an argument?
 

Проблема

У меня сложилось впечатление, что мне нужно сначала отменить тестирование показателей RMSE и RSQ для всех подходящих моделей (т.Е. glm, деревьев с мешками, случайного леса, усиленных деревьев), прежде чем я смогу выполнять прогнозы модели с помощью подходящей модели на тестовых данных, чтобы оценить эффективность модели, или отменить тестирование лучшей модели издиапазон моделей, проверенных во время 10-кратной перекрестной проверки, с помощью функции, созданной для подгонки моделей.

Если кто-нибудь сможет, пожалуйста, помочь мне решить проблему прогнозирования тестовых данных на подобранных моделях с помощью функции predict(), я был бы глубоко признателен. Я не могу визуализировать показатели RMSE и RSQ на одном графике без привязки истинных и наблюдаемых значений к одному фрейму данных для построения графика с использованием ggplot().

Заранее большое спасибо.

График

введите описание изображения здесь

R-кода

Попытка 1

     ##################################################
    ##Model Prediction
    ###################################################
    ##Open the tidymodels package
    library(tidymodels)
    library(tidyverse)
    library(glmnet)
    library(parsnip)
    library(rpart)
    library(tidyverse) # manipulating data
    library(skimr) # data visualization
    library(baguette) # bagged trees
    library(future) # parallel processing amp; decrease computation time
    library(xgboost) # boosted trees
    library(ranger)
    library(yardstick)
    library(purrr)
    library(forcats)    

###########################################################
#split this single dataset into two: a training set and a testing set
data_split <- initial_split(FID)
# Create data frames for the two sets:
train_data <- training(data_split)
test_data  <- testing(data_split)

# resample the data with 10-fold cross-validation (10-fold by default)
cv <- vfold_cv(train_data, v=10)

###########################################################
##Produce the recipe

rec <- recipe(Frequency ~ ., data = FID) %>% 
          step_nzv(all_predictors(), freq_cut = 0, unique_cut = 0) %>% # remove variables with zero variances
          step_novel(all_nominal()) %>% # prepares test data to handle previously unseen factor levels 
          step_medianimpute(all_numeric(), -all_outcomes(), -has_role("id vars"))  %>% # replaces missing numeric observations with the median
          step_dummy(all_nominal(), -has_role("id vars")) # dummy codes categorical variables

###########################################################
##Create Models
###########################################################

##########################################################
##General Linear Models
#########################################################

##glm
mod_glm<-linear_reg(mode="regression",
                       penalty = 0.1, 
                       mixture = 1) %>% 
                            set_engine("glmnet")

##Create workflow
wflow_glm <- workflow() %>% 
                add_recipe(rec) %>%
                      add_model(mod_glm)

##Fit the model
plan(multisession)

fit_glm <- fit_resamples(
                        wflow_glm,
                        cv,
                        metrics = metric_set(rmse, rsq),
                        control = control_resamples(save_pred = TRUE,
                              extract = function(x) extract_model(x)))

##########################################################
##Bagged Trees
##########################################################

#####Bagged Trees
mod_bag <- bag_tree() %>%
            set_mode("regression") %>%
              set_engine("rpart", times = 10) #10 bootstrap resamples
                

##Create workflow
wflow_bag <- workflow() %>% 
                   add_recipe(rec) %>%
                       add_model(mod_bag)

##Fit the model
plan(multisession)

fit_bag <- fit_resamples(
                      wflow_bag,
                      cv,
                      metrics = metric_set(rmse, rsq),
                      control = control_resamples(save_pred = TRUE,
                              extract = function(x) extract_model(x)))
###################################################
##Random forests
###################################################

mod_rf <-rand_forest(trees = 1e3) %>%
                              set_engine("ranger",
                              num.threads = parallel::detectCores(), 
                              importance = "permutation", 
                              verbose = TRUE) %>% 
                              set_mode("regression") 
                              
##Create Workflow

wflow_rf <- workflow() %>% 
               add_model(mod_rf) %>% 
                     add_recipe(rec)

##Fit the model

plan(multisession)

fit_rf<-fit_resamples(
             wflow_rf,
             cv,
             metrics = metric_set(rmse, rsq),
             control = control_resamples(save_pred = TRUE,
                                         extract = function(x) extract_model(x)))

############################################################
##Boosted Trees
############################################################

mod_boost <- boost_tree() %>% 
                 set_engine("xgboost", nthreads = parallel::detectCores()) %>% 
                      set_mode("regression")

##Create Workflow

wflow_boost <- workflow() %>% 
                  add_recipe(rec) %>% 
                    add_model(mod_boost)

##Fit model

plan(multisession)

fit_boost <-fit_resamples(
                       wflow_boost,
                       cv,
                       metrics = metric_set(rmse, rsq),
                       control = control_resamples(save_pred = TRUE,
                                         extract = function(x) extract_model(x)))
 

Предсказания модели

 ###################################
##Model Prediction
####################################

  ##glm model

  test_res <- predict(fit_glm, new_data = test_data %>% select(-Frequency))

  ##Error Message

      Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "c('resample_results', 'tune_results', 'tbl_df', 'tbl', 'data.frame')"

##Predicted numeric outcome from the regression model is named .pred. Let’s match 
#the predicted values with their corresponding observed outcome values:

 bind_test_res <- bind_cols(test_res, test_data %>% select(Frequency))

#Note that both the predicted and observed outcomes are in log10 units. 
#It is best practice to analyze the predictions on the transformed scale 
#(if one were used) even if the predictions are reported using the original units.
 

Постройте график данных с помощью ggplot ():

  ggplot(bind_test_res, aes(x = Frequency, y = .pred))   
         # Create a diagonal line:
  geom_abline(lty = 2)   
  geom_point(alpha = 0.5)   
  labs(y = "Predicted Frequency (log10)", x = "Frequency (log10)")  
  # Scale and size the x- and y-axis uniformly:
  coord_obs_pred()
 

Попытка 2

 ##split this single dataset into two: a training set and a testing set
data_split <- initial_split(FID)
# Create data frames for the two sets:
train_data <- training(data_split)
test_data  <- testing(data_split)

##Produce the recipe

rec <- recipe(Frequency ~ ., data = FID) %>% 
          step_nzv(all_predictors(), freq_cut = 0, unique_cut = 0) %>% # remove variables with zero variances
          step_novel(all_nominal()) %>% # prepares test data to handle previously unseen factor levels 
          step_medianimpute(all_numeric(), -all_outcomes(), -has_role("id vars"))  %>% # replaces missing numeric observations with the median
          step_dummy(all_nominal(), -has_role("id vars")) # dummy codes categorical variables

# resample the data with 10-fold cross-validation (10-fold by default)
cv <- vfold_cv(train_data, v=10)

Run our models
# Extract our prepped training data 
# and "bake" our testing data

prep<-prep(rec)

training_baked<-juice(prep)

testing_baked <- prep %>% bake(test_data) 

##glm model
glm_model<-linear_reg(mode="regression",
                      penalty = 0.1, 
                      mixture = 1) %>% 
                      set_engine("glmnet") 
                     

##Create workflow
wflow_glm <- workflow() %>% 
                 add_recipe(prep) %>%
                         add_model(glm_model)
                             
##fit the model                            
fit_glm<- wflow_glm %>% fit(Frequency~Year Month Days, data=FID)

##Error Message

Error: `...` is not empty.

We detected these problematic arguments:
* `..1`

These dots only exist to allow future extensions and should be empty.
Did you misspecify an argument?
 

Фрейма данных — FID

 structure(list(Year = c(2015, 2015, 2015, 2015, 2015, 2015, 2015, 
2015, 2015, 2015, 2015, 2015, 2016, 2016, 2016, 2016, 2016, 2016, 
2016, 2016, 2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017, 2017, 
2017, 2017, 2017, 2017, 2017, 2017, 2017), Month = structure(c(1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 
8L, 9L, 10L, 11L, 12L), .Label = c("January", "February", "March", 
"April", "May", "June", "July", "August", "September", "October", 
"November", "December"), class = "factor"), Frequency = c(36, 
28, 39, 46, 5, 0, 0, 22, 10, 15, 8, 33, 33, 29, 31, 23, 8, 9, 
7, 40, 41, 41, 30, 30, 44, 37, 41, 42, 20, 0, 7, 27, 35, 27, 
43, 38), Days = c(31, 28, 31, 30, 6, 0, 0, 29, 15, 
29, 29, 31, 31, 29, 30, 30, 7, 0, 7, 30, 30, 31, 30, 27, 31, 
28, 30, 30, 21, 0, 7, 26, 29, 27, 29, 29)), row.names = c(NA, 
-36L), class = "data.frame")
 

Комментарии:

1. Похоже, вы устанавливаете вызываемую переменную fit_glm , а затем пытаетесь предсказать glm_fit . Или я неправильно понимаю?

2. Я пытаюсь предсказать подходящую модель на основе тестовых данных на основе кода в руководстве

3. Понятно; но (и я могу ошибаться), похоже, что вы делаете test_res <- predict(glm_fit, new_data = test_data %>% select(-Frequency)) то, что должны делать test_res <- predict(fit_glm, new_data = test_data %>% select(-Frequency)) (на основе того, что вы обучили — обратите внимание на разницу в первом аргументе)

4. Это была ошибка копирования и прошлого, когда я писал вопрос. Спасибо, что обратили мое внимание на эту ошибку. Когда я исправил ошибку, я получаю новое сообщение об ошибке, которое я не понимаю. Не могли бы вы меня просветить?

5. Я недостаточно знаком с tidymodels, чтобы быть уверенным, но я думаю, это потому, что вы подходите fit_resamples , а не просто fit . Взгляните на ответ Джулии здесь: community.rstudio.com/t / … (Я не смотрел учебник, над которым вы работаете)

Ответ №1:

Этот ответ вдохновлен Максом Хуном

 #split this single dataset into two: a training set and a testing set
data_split <- initial_split(FID)
# Create data frames for the two sets:
train_data <- training(data_split)
test_data  <- testing(data_split)

# resample the data with 10-fold cross-validation (10-fold by default)
cv <- vfold_cv(train_data, v=10)

###########################################################
##Produce the recipe

rec <- recipe(Frequency ~ ., data = FID) %>% 
          step_nzv(all_predictors(), freq_cut = 0, unique_cut = 0) %>% # remove variables with zero variances
          step_novel(all_nominal()) %>% # prepares test data to handle previously unseen factor levels 
          step_medianimpute(all_numeric(), -all_outcomes(), -has_role("id vars"))  %>% # replaces missing numeric observations with the median
          step_dummy(all_nominal(), -has_role("id vars")) # dummy codes categorical variables

##########################################################
##Produce Models
##########################################################
##General Linear Models
##########################################################

##Produce the glm model
mod_glm<-linear_reg(mode="regression",
                       penalty = 0.1, 
                       mixture = 1) %>% 
                            set_engine("glmnet")

##Create workflow
wflow_glm <- workflow() %>% 
                add_recipe(rec) %>%
                      add_model(mod_glm)

#######################################################################
##MODEL EVALUATION
#######################################################################
##Estimate how well that model performs, let’s fit many times, 
##once to each of these resampled folds, and then evaluate on the heldout 
##part of each resampled fold.
##########################################################################
plan(multisession)

fit_glm <- fit_resamples(
                        wflow_glm,
                        cv,
                        metrics = metric_set(rmse, rsq),
                        control = control_resamples(save_pred = TRUE)
                        )

##Collect model predictions for each fold for the predictor frequency

Predictions<-fit_glm %>% 
                    collect_predictions()

##Produce a data frame of the Predictions model

Prediction<-as.data.frame(Predictions)

##Open a new plotting window
dev.new()

##Visualise the data by plotting the predicted vs true values
ggplot(Prediction, aes(x = Frequency, y = .pred))   
  # Create a diagonal line:
  geom_abline(lty = 2)   
  geom_point(alpha = 0.5)   
  labs(y = "Predicted Frequency (log10)", x = "Frequency (log10)")  
  # Scale and size the x- and y-axis uniformly:
  coord_obs_pred()
 

График

введите описание изображения здесь