#r #mle
#r #mle
Вопрос:
Я пытаюсь написать код для определения g, сигма и лямбда, используя максимальное правдоподобие для следующего функционального уравнения. Мне нужно было ограничить интервалы, чтобы убедиться, что уравнение не принимает логарифм отрицательного числа, однако оно выдает ошибку «L-BFGS-B нужны конечные значения». Что я могу сделать, чтобы исправить это?
lnQs<- c(0.4452211, 3.2828926, 3.0752400, 2.6613305, 5.8122312, 0.5629881, 0.8445112, 4.4336806, 3.8253957, 0.9336889, 1.5188934, 4.3915304, 2.5368227, 0.3729370, 2.3683679, 2.3555777, 0.5985054, 0.6240360, 0.9462143, 0.5440311, 2.6390102, 0.4921728, 0.2971820, 0.1939826, 0.5621709, 0.7839881, 2.2367834, 10.4101839, 5.8010886, 6.0974008)
Rf<- c(0.0484, 0.0537, 0.0598, 0.0590, 0.0590, 0.0571, 0.0497, 0.0497, 0.0492, 0.0588, 0.0586, 0.0492, 0.0468, 0.0480, 0.0405, 0.0405, 0.0488, 0.0452, 0.0675, 0.0395, 0.0395, 0.0385, 0.0400, 0.0432, 0.0394, 0.0397, 0.0397, 0.0407, 0.0436, 0.0436)
S<- c(0.8, 2.3, 2.2, 3.3, 4.9, 8.7, 0.8, 0.9, 1.8, 2.3, 1.3, 1.9, 5.7, 9.3, 4.9, 18.7, 3.6, 2.4, 15.1, 10.3, 0.8, 2.9, 12.0, 0.8, 9.9, 1.3, 8.9, 12.3, 4.2, 4.2)
T<- c(1.0, 5.0, 5.0, 7.0, 5.1, 21.0, 14.1, 5.0, 5.0, 12.0, 7.0, 3.0, 7.0, 21.0, 7.0, 21.0, 21.0, 21.0, 21.0, 20.0, 5.0, 21.0, 21.0, 21.1, 21.0, 14.0, 12.0, 14.0, 5.0, 5.0)
LL<- function(g,sigma,lambda){
R=(dnorm(lnQs,(log(1 Rf lambda)-sigma^2/2)*S-log(((1 Rf lambda)/(1 g))^T-1),sigma*S^0.5))
#
-sum(log(R), log=TRUE)
}
fit<-mle(minuslogl=LL, start=list(g=.05, sigma=.2, lambda=.1), method = "L-BFGS-B",lower=c(0,0,0.0915),upper=c(0.13,Inf,Inf))
summary(fit)
#Criteria required
# lambda>-(1 Rf) - easily done with restriction lambda>0
# lambda>(g-Rf) - NOT SURE HOW TO DEAL WITH lowest Rf=0.0385, tried putting upper limit on g and lower limit on lambda for now
# sigma>0 - easily done with restriction sigma>0
# Problem that L-BFGS-B needs finite values offit<-mle(minuslogl=LL, start=list(g=.077, sigma=.256, lambda=.110), method = "BFGS")
Ответ №1:
Нужны ли вам пределы Inf для ваших сигма- и лямбда-параметров для MLE? например, следующее работает без ошибок (хотя лямбда-оценка довольно плохая с высокой ошибкой std):
set.seed(123)
T<-0.5
S<-1
Rf<-2
g <-.1
sigma <- .5
lambda <- 1
lnQs <- rnorm(100,(log(1 Rf lambda)-sigma^2/2)*S-log(((1 Rf lambda)/(1 g))^T-1),sigma*S^0.5)
# negative ll fn
LL<- function(g,sigma,lambda){
R <- dnorm(lnQs,(log(1 Rf lambda)-sigma^2/2)*S-log(((1 Rf lambda)/(1 g))^T-1),sigma*S^0.5)
-sum(log(R))
}
fit<-mle(minuslogl=LL, start=list(g=.05, sigma=.2, lambda=.1), method = "L-BFGS-B",lower=c(0,0,0.0915),upper=c(0.13,5,5))
summary(fit)
Maximum likelihood estimation
Call:
mle(minuslogl = LL, start = list(g = 0.05, sigma = 0.2, lambda = 0.1),
method = "L-BFGS-B", lower = c(0, 0, 0.0915), upper = c(0.13,
5, 5))
Coefficients:
Estimate Std. Error
g 0.10583 16.869598
sigma 0.45412 0.032111
lambda 0.39076 363.867321
С предоставленными вами данными LL вычисляется до бесконечности во многих точках с множеством разных значений ваших параметров, например, используя простой поиск по сетке в [0,1] x [0,1] x [0,1], вы можете найти следующие точки, где LL вычисляется до бесконечности (а иногда и NAN), чтовот почему L-BFGS-G терпит неудачу:
g <- seq(0,1,length=10)
sigma <- seq(0,1,length=10)
lambda <- seq(0,1,length=10)
# grid search
for (i in 1:10) {
for (j in 1:10) {
for (k in 1:10) {
if (LL(g[i],sigma[j],lambda[k]) == Inf) {
print(paste(g[i],sigma[j],lambda[k]))
}
}
}
}
Некоторые точки, в которых LL оценивается как Inf
[1] "0 0 0"
[1] "0 0 0.111111111111111"
[1] "0 0 0.222222222222222"
[1] "0 0 0.333333333333333"
[1] "0 0 0.444444444444444"
[1] "0 0 0.555555555555556"
[1] "0 0 0.666666666666667"
[1] "0 0 0.777777777777778"
[1] "0 0 0.888888888888889"
[1] "0 0 1"
[1] "0 0.111111111111111 0.111111111111111"
[1] "0 0.111111111111111 0.222222222222222"
[1] "0 0.111111111111111 0.333333333333333"
[1] "0 0.111111111111111 0.444444444444444"
Существует простой способ, который может решить проблему:
LL<- function(g,sigma,lambda){
R=(dnorm(lnQs,(log(1 Rf lambda)-sigma^2/2)*S-log(((1 Rf lambda)/(1 g))^T-1),sigma*S^0.5))
#
ll <- -sum(log(R), log=TRUE)
ifelse(ll == Inf, 9999999, ll) # return a large enough number if Inf
}
fit<-mle(minuslogl=LL, start=list(g=.05, sigma=.2, lambda=.1), method = "L-BFGS-B",lower=c(0,0,0.0915),upper=c(0.13,Inf,Inf))
summary(fit)
Maximum likelihood estimation
Call:
mle(minuslogl = LL, start = list(g = 0.05, sigma = 0.2, lambda = 0.1),
method = "L-BFGS-B", lower = c(0, 0, 0.0915), upper = c(0.13,
Inf, Inf))
Coefficients:
Estimate Std. Error
g 0.1249300 0.07295480
sigma 0.8795551 0.07349924
lambda 0.0915000 0.07459289
-2 log L: 160.1491
Комментарии:
1. Когда я заменяю верхние пределы на 5, все равно появляется ошибка «L-BFGS-B нужны конечные значения
2. вот данные для T, S, Rf и LNQ, если это поможет:
3. просто использовал хак, чтобы исправить проблему с L-BFGS-B, всякий раз, когда LL вычисляет до бесконечности, возвращает достаточно большое число из функции LL, и, похоже, это работает. Давайте посмотрим, соответствует ли это вашим требованиям.
4. Спасибо за помощь. У меня действительно есть оптимальные результаты, и я просто учусь, как к ним добраться. Они следующие: g = 0,077 (0,028), лямбда = 0,110 (0,032) и сигма = 0,256 (0,033). У вас есть какие-либо идеи, что может вызвать это несоответствие?
5. пробовал также использовать методы BGFS и CG, получая аналогичные решения с вашими данными. Моя догадка, вероятно, заключается в том, что она застревает в локальных минимумах