#python #pandas #interpolation #reindex
#python #панды #интерполяция #переиндексация
Вопрос:
Я столкнулся с простой DataFrame.reindex().interpolate()
проблемой, потому что используемые мной фреймы данных не имеют индекса даты и времени.
У меня есть DataFrame1: t
это выглядит так:
In[1]: import pandas as pd
t = pd.DataFrame({'D18O': [-0.47, -0.12, 0.55, 0.72, 1.8 , 1.1 , 0.43, -0.29, -0.55,
-0.6 , -0.32, 0.28, 0.72, 1.1 , 1.34, 1.32, 1.11, 0.46,
0.09, 0.02]})
Out[2]:
1 -0.47
2 -0.12
3 0.55
4 0.72
5 1.80
6 1.10
7 0.43
8 -0.29
9 -0.55
10 -0.60
11 -0.32
12 0.28
13 0.72
14 1.10
15 1.34
16 1.32
17 1.11
18 0.46
19 0.09
20 0.02
Name: D18O, dtype: float64
Я хочу «растянуть» его до 430 строк, равномерно распределяя каждую строку и линейно интерполируя значения между ними. Это потому, что мой фрейм данных 2: env
содержит 430 строк, и я хочу провести более поздний анализ, для которого оба фрейма должны иметь одинаковое измерение.
In[2]: env.index
Out[49]: RangeIndex(start=0, stop=430, step=1)
Я пробовал переиндексировать и интерполировать во многих комбинациях, но просто не могу найти правильный метод. Я думаю, проблема в том, что 430 неравномерно делится на 19/20.
new_idx = np.linspace(t.index[0], t.index[-1], env.shape[0])
t.reindex(new_idx).interpolate()
Я думал, что это может сработать, но поскольку индексы не равны, он пропускает большинство значений t
и оставляет меня с почти пустым новым фреймом данных.
Для шага переиндексации я ожидаю чего-то вроде:
In[3]: t['D18O']
Out[3]:
0 0.47
2.13157 NaN
2.26315 NaN
... ...
21.5 -0.12
22.63157 NaN
23.76315 NaN
... ...
... ...
430 0.02
Name: D18O, dtype: float64
Индексы на самом деле не имеют значения, если значения распределены равномерно, а количество строк соответствует количеству строк в env
.
Ответ №1:
Вы можете использовать параметр ffill
с limit
DataFrame.reindex
помощью in , но есть проблема с дублированием первого значения, поэтому возможным решением является добавление первого вспомогательного значения, близкого 0
к индексу, reindex
, удаление его по iloc
и последнее interpolate
:
r = pd.RangeIndex(0, 430, 1)
t.loc[-0.001] = 0
t = t.sort_index()
new_idx = np.linspace(t.index[0], t.index[-1], len(r))
print (t.reindex(new_idx, method='ffill', limit=1).iloc[1:].interpolate())
D18O
0.043291 -0.470000
0.087583 -0.454091
0.131874 -0.438182
0.176166 -0.422273
0.220457 -0.406364
0.264748 -0.390455
0.309040 -0.374545
0.353331 -0.358636
0.397622 -0.342727
0.441914 -0.326818
0.486205 -0.310909
0.530497 -0.295000
0.574788 -0.279091
0.619079 -0.263182
0.663371 -0.247273
0.707662 -0.231364
0.751953 -0.215455
...
...
Комментарии:
1. Это работает отлично. Если я построю оригинал и интерполирую
t
, они покажут точно такой же график. Тем не менее, я не совсем понимаю взаимосвязь между вставкой индекса, прямым заполнением и исключением первого значения. Я думалmethod='ffill'
, что заполнит каждое значение между двумя записями?2. @cripcate — Точно, если удалить
limit=1
его, замените всеNaN
значения s между, ограничение, которое я использовал только для первой замены одного NaN.3. Ах, хорошо, значит, он заполняет только одно значение. Я все еще не совсем понимаю, зачем нужно вспомогательное значение, хотя, извините. И разве я не должен делать
t.loc[-0.0001] = t[0]
это вместоt.loc[-0.0001] = t[0]
того, чтобы? Извините, здесь немного запутался.4. @cripcate — я думаю, что это работает так же, если
t[0]
или0
, потому что это значение не используется для интерполяции. Проверьте это, удаливt.loc[-0.001] = 0
иt.reindex(new_idx, method='ffill', limit=1).interpolate()
5. для меня это работает отлично, но только тогда, когда я отклоняю вставку вспомогательного значения
Ответ №2:
Теперь я использовал более общий способ интерполяции данных по определенному индексу. Я просто хочу перечислить свой подход для будущих ссылок:
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
# Example data 5 numeric columns
i = pd.RangeIndex(0, 430, 1)
df1 = pd.DataFrame([-0.47, -0.12, 0.55, 0.72, 1.8, 1.1, 0.43, -0.29,
-0.55, -0.6, -0.32, 0.28, 0.72, 1.1 , 1.34, 1.32,
1.11, 0.46, 0.09, 0.02], [-0.47, -0.12, 0.55, 0.72, 1.8, 1.1, 0.43, -0.29,
-0.55, -0.6, -0.32, 0.28, 0.72, 1.1 , 1.34, 1.32,
1.11, 0.46, 0.09, 0.02], [-0.47, -0.12, 0.55, 0.72, 1.8, 1.1, 0.43, -0.29,
-0.55, -0.6, -0.32, 0.28, 0.72, 1.1 , 1.34, 1.32,
1.11, 0.46, 0.09, 0.02])
# Select numeric columns
nums = df1.select_dtypes([np.number])
old_idx = df.index
# Calculate new index
len_idx = env.shape[0]
mi, ma = old_idx.min(), old_idx.max()
new_idx = np.linspace(mi, ma, len_idx)
# Plot to compare interpolation to original values
fig, ax = plt.subplots(1, 1)
ax.plot(old_idx, df1.iloc[:, 0], 'k--')
def interpol(column):
```Interpolation function```
interpolant = interp1d(old_idx, column)
interpolated = interpolant(new_idx)
return interpolated
# Interpolate data to match index length of enviromental data
inter_nums = pd.DataFrame(index=new_idx)
for col in nums:
inter = interpol(nums[col])
inter_nums[col] = inter
# Plot after interpolation. Same curve? good!
ax.plot(inter_nums_iloc[:; 0], c='r')