#tensorflow #keras #deep-learning #lstm
#tensorflow #keras #глубокое обучение #lstm
Вопрос:
Я пытаюсь применить среднее объединение на каждом временном шаге вывода lstm, пожалуйста, найдите мою архитектуру, как показано ниже
X_input = tf.keras.layers.Input(shape=(64,35))
X= tf.keras.layers.LSTM(512,activation="tanh",return_sequences=True,kernel_initializer=tf.keras.initializers.he_uniform(seed=45),kernel_regularizer=tf.keras.regularizers.l2(0.1))(X_input)
X= tf.keras.layers.LSTM(256,activation="tanh",return_sequences=True,kernel_initializer=tf.keras.initializers.he_uniform(seed=45),kernel_regularizer=tf.keras.regularizers.l2(0.1))(X)
X = tf.keras.layers.GlobalAvgPool1D()(X)
X = tf.keras.layers.Dense(128,activation="relu",kernel_initializer=tf.keras.initializers.he_uniform(seed=45),kernel_regularizer=tf.keras.regularizers.l2(0.1))(X)
X = tf.keras.layers.Dense(64,activation="relu",kernel_initializer=tf.keras.initializers.he_uniform(seed=45),kernel_regularizer=tf.keras.regularizers.l2(0.1))(X)
X = tf.keras.layers.Dense(32,activation="relu",kernel_initializer=tf.keras.initializers.he_uniform(seed=45),kernel_regularizer=tf.keras.regularizers.l2(0.1))(X)
# X = tf.keras.layers.Dense(16,activation="relu",kernel_initializer=tf.keras.initializers.he_uniform(seed=45),kernel_regularizer=tf.keras.regularizers.l2(0.1))(X)
output_layer = tf.keras.layers.Dense(10,activation='softmax', kernel_initializer=tf.keras.initializers.he_uniform(seed=45))(X)
model2 = tf.keras.Model(inputs = X_input,outputs = output_layer)
Я хочу получать среднее значение на каждом временном шаге, а не на каждом блоке
Например, сейчас я получаю форму (None, 256), но я хочу получить форму (None, 64) из глобального среднего уровня объединения, что мне нужно для этого сделать.
Комментарии:
1. X = tf.reduce_mean(X, axis=-1) вместо tf.keras. слои. GlobalAvgPool1D()(X)
Ответ №1:
Я не уверен, что это самый эффективный способ, но вы можете попробовать это :
X = tf.keras.layers.Reshape(target_shape=(64,256,1))(X)
X = tf.keras.layers.TimeDistributed(tf.keras.layers.GlobalAveragePooling1D())(X)
X = tf.keras.layers.Reshape(target_shape=(64,))(X)
вместо :
X = tf.keras.layers.GlobalAvgPool1D()(X)
Теперь сводка :
Model: "functional_13"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_14 (InputLayer) [(None, 64, 35)] 0
_________________________________________________________________
lstm_26 (LSTM) (None, 64, 512) 1122304
_________________________________________________________________
lstm_27 (LSTM) (None, 64, 256) 787456
_________________________________________________________________
reshape_2 (Reshape) (None, 64, 256, 1) 0
_________________________________________________________________
time_distributed_8 (TimeDist (None, 64, 1) 0
_________________________________________________________________
reshape_3 (Reshape) (None, 64) 0
_________________________________________________________________
dense_61 (Dense) (None, 128) 8320
_________________________________________________________________
dense_62 (Dense) (None, 64) 8256
_________________________________________________________________
dense_63 (Dense) (None, 32) 2080
_________________________________________________________________
dense_64 (Dense) (None, 10) 330
=================================================================
Total params: 1,928,746
Trainable params: 1,928,746
Non-trainable params: 0