#r #dataframe #datetime #transform
#r #фрейм данных #дата-время #преобразование
Вопрос:
У меня большая база данных об употреблении наркотиков:
library(data.table)
df <- data.frame("ID" = c(1,1,1,1,2,2,2,3,3), "IndexDate" = c("2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", "2019-05-01", "2019-05-01", "2019-05-01", "2019-07-01", "2019-07-01"), "CensorDate" = c("2019-06-30", "2019-06-30", "2019-06-30", "2019-06-30", "2019-07-30", "2019-07-30", "2019-07-30", "2019-12-31", "2019-12-31"), "DrugStart" = c("2019-02-01", "2019-03-01", "2019-04-01", "2019-06-01", "2019-03-01", "2019-04-15", "2019-05-16", "2019-07-05", "2020-01-01"), "DrugEnd" = c("2019-02-15", "2019-04-15", "2019-04-30", "2019-06-05", "2019-03-15", "2019-05-15", "2019-05-30", "2019-07-15", "2020-01-15"),"Notes" = c("", "", "Overlap 15 days", "", "All days before IndexDate", "15 days before IndexDate", "", "", "15 days after CensorDate"))
df
ID IndexDate CensorDate DrugStart DrugEnd Notes
1 1 2019-01-01 2019-06-30 2019-02-01 2019-02-15
2 1 2019-01-01 2019-06-30 2019-03-01 2019-04-15
3 1 2019-01-01 2019-06-30 2019-04-01 2019-04-30 Overlap 15 days
4 1 2019-01-01 2019-06-30 2019-06-01 2019-06-05
5 2 2019-05-01 2019-07-30 2019-03-01 2019-03-15 All days before IndexDate
6 2 2019-05-01 2019-07-30 2019-04-15 2019-05-15 15 days before IndexDate
7 2 2019-05-01 2019-07-30 2019-05-16 2019-05-30
8 3 2019-07-01 2019-12-31 2019-07-05 2019-07-15
9 3 2019-07-01 2019-12-31 2020-01-01 2020-01-15 15 days after CensorDate
IndexDate
И CensorDate
все одинаковы для каждого ID
. Период наблюдения составляет от IndexDate
до CensorDate
.
Я хотел бы изменить его по следующим критериям:
- Связан
ID
- Пренебречь днями до
IndexDate
или послеCensorDate
; - Перекрывающиеся периоды времени учитываются только один раз;
df
это база данных об употреблении наркотиков. Все периоды вdf
(отDrugStart
доDrugEnd
) означают использование препарата. Пропущенный период вdf
, но в течение периода наблюдения (отIndexDate
доCensorDate
) означает, что препарат не используется.- Употребление наркотиков помечено как 2 (употребление) и 1 (не употребление);
IndexDate
определяется как день 0 (означает, что все время начала «TimeStart
» равно 0).
Я ожидаю следующих результатов:
> df2 <- data.frame("ID" = c(1,1,1,1,1,1,1,2,2,3,3,3), "TimeStart" = c("0", "31", "46", "59", "120", "151", "156", "0", "30", "0", "4", "15"), "TimeEnd" = c("30", "45", "58", "119", "150", "155", "180", "29", "90", "3", "14", "183"), "DrugUse" = c("1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "2", "1"))
> df2
ID TimeStart TimeEnd DrugUse
1 1 0 30 1
2 1 31 45 2
3 1 46 58 1
4 1 59 119 2
5 1 120 150 1
6 1 151 155 2
7 1 156 180 1
8 2 0 29 2
9 2 30 90 1
10 3 0 3 1
11 3 4 14 2
12 3 15 183 1
Теперь я знаю, как генерировать TimeStart
и TimeEnd
с помощью « DrugStart
— IndexDate
» и « DrugEnd
— IndexDate
» следующим образом:
df$TimeStart<- as.Date(df$DrugStart, format="%Y-%m-%d")-as.Date(df$IndexDate, format="%Y-%m-%d")
df$TimeEnd<- as.Date(df$DrugEnd, format="%Y-%m-%d")-as.Date(df$IndexDate, format="%Y-%m-%d")
df
ID IndexDate CensorDate DrugStart DrugEnd Notes_Drug.use.days TimeStart TimeEnd
1 1 2019-01-01 2019-06-30 2019-02-01 2019-02-15 15days 31 days 45 days
2 1 2019-01-01 2019-06-30 2019-03-01 2019-04-15 46days 59 days 104 days
3 1 2019-01-01 2019-06-30 2019-04-01 2019-04-30 Overlap 15days 15days 90 days 119 days
4 1 2019-01-01 2019-06-30 2019-06-01 2019-06-05 5days 151 days 155 days
5 2 2019-05-01 2019-07-30 2019-03-01 2019-03-15 15days before IndexDate -61 days -47 days
6 2 2019-05-01 2019-07-30 2019-04-15 2019-05-15 15days before IndexDate 15days -16 days 14 days
7 2 2019-05-01 2019-07-30 2019-05-16 2019-05-30 15days 15 days 29 days
8 3 2019-07-01 2019-12-31 2019-07-05 2019-07-15 11days 4 days 14 days
9 3 2019-07-01 2019-12-31 2020-01-01 2020-01-15 15days after CensorDate 184 days 198 days
Но я не знаю, как обращаться с перекрывающимися периодами и этими непрерывными периодами, как показано ниже:
# Overlapped periods:
# Transform
ID TimeStart TimeEnd
2 1 59 days 104 days
3 1 90 days 119 days
# to
ID TimeStart TimeEnd
2 1 59 days 119 days
# And Continous periods:
# Transform
ID TimeStart TimeEnd
6 2 -16 days 14 days
7 2 15 days 29 days
# To
ID TimeStart TimeEnd
6 2 0 days 29 days
Also, how to add those periods that we do not use the drug (those DrugUse=1
)? such as these lines:
ID TimeStart TimeEnd DrugUse
1 1 0 30 1
3 1 46 58 1
5 1 120 150 1
7 1 156 180 1
9 2 30 90 1
10 3 0 3 1
12 3 15 183 1
Кто-нибудь мне поможет? Большое вам спасибо!
#####################################################
Обновлено: спасибо за ответ Bas!! Я внес незначительные изменения в ответ Bas. Следующий код может быть окончательной версией!!
library(data.table)
df <- data.frame("ID" = c(1,1,1,1,2,2,2,3,3), "IndexDate" = c("2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", "2019-05-01", "2019-05-01", "2019-05-01", "2019-07-01", "2019-07-01"), "CensorDate" = c("2019-06-30", "2019-06-30", "2019-06-30", "2019-06-30", "2019-07-30", "2019-07-30", "2019-07-30", "2019-12-31", "2019-12-31"), "DrugStart" = c("2019-02-01", "2019-03-01", "2019-04-01", "2019-06-01", "2019-03-01", "2019-04-15", "2019-05-16", "2019-07-05", "2020-01-01"), "DrugEnd" = c("2019-02-15", "2019-04-15", "2019-04-30", "2019-06-05", "2019-03-15", "2019-05-15", "2019-05-30", "2019-07-15", "2020-01-15"),"Notes" = c("", "", "Overlap 15 days", "", "All days before IndexDate", "15 days before IndexDate", "", "", "15 days after CensorDate"))
df$DrugEnd <- as.Date(df$DrugEnd, format="%Y-%m-%d") 1
df$CensorDate <- as.Date(df$CensorDate, format="%Y-%m-%d") 1
library(dplyr)
library(tidyr)
library(lubridate)
df2 <- df %>%
mutate(across(IndexDate:DrugEnd, as.Date)) %>%
filter(DrugStart <= CensorDate, # Neglect days before IndexDate or after CensorDate
DrugEnd >= IndexDate) %>%
group_by(ID) %>%
mutate(interval = list(int_diff(sort(unique(c(IndexDate, CensorDate, DrugStart, DrugEnd)))))) %>%
unnest(interval) %>%
mutate(DrugUse = DrugStart < int_end(interval) amp; DrugEnd > int_start(interval)) %>%
group_by(ID, interval) %>%
summarise(IndexDate = first(IndexDate),
CensorDate = first(CensorDate),
DrugUse = if_else(sum(DrugUse) > 0, 2, 1)) %>%
ungroup() %>%
filter(int_end(interval) <= CensorDate,
int_start(interval) >= IndexDate) %>%
mutate(TimeStart = as.numeric(difftime(int_start(interval), IndexDate, units = "days")),
TimeEnd = as.numeric(difftime(int_end(interval), IndexDate, units = "days"))-1) %>%
group_by(ID, data.table::rleid(DrugUse)) %>%
summarise(TimeStart = min(TimeStart),
TimeEnd = max(TimeEnd),
DrugUse = first(DrugUse)) %>%
select(ID, TimeStart, TimeEnd, DrugUse)
> df2
# A tibble: 12 x 4
# Groups: ID [3]
ID TimeStart TimeEnd DrugUse
<dbl> <dbl> <dbl> <dbl>
1 1 0 30 1
2 1 31 45 2
3 1 46 58 1
4 1 59 119 2
5 1 120 150 1
6 1 151 155 2
7 1 156 180 1
8 2 0 29 2
9 2 30 90 1
10 3 0 3 1
11 3 4 14 2
12 3 15 183 1
#####################################################
2-е обновление: если ваш набор данных слишком велик (например, более миллиона записей), использование приведенных выше кодов может быть очень медленным. Следующий файл unnest()
очень большой, и этот шаг выполняется очень медленно.
В этом случае мы можем разделить файл, используя split()
(лучше не более 10 тысяч записей в каждом файле). Выполняется с помощью синтаксиса цикла ( for(i in sequence){statement}
). Затем объедините файлы с помощью rbind()
.
Удачи!
Комментарии:
1.
df
это база данных об употреблении наркотиков. Все периоды вdf
(отDrugStart
доDrugEnd
) означаютDrugUse=2
. Пропущенный период вdf
, но в пределах периода наблюдения (отIndexDate
доCensorDate
) означаетDrugUse=1
2. Я думаю
lubridate::int_diff()
, может пригодиться3. @Bas Я пока не знаю, как его использовать. Не могли бы вы привести мне пример?
Ответ №1:
Используя dplyr
, tidyr
и lubridate
, это приближает вас к цели, но не совсем туда:
df %>%
mutate(across(IndexDate:DrugEnd, as.Date)) %>%
filter(DrugStart <= CensorDate, # Neglect days before IndexDate or after CensorDate
DrugEnd >= IndexDate) %>%
group_by(ID) %>%
mutate(interval = list(int_diff(sort(unique(c(IndexDate, CensorDate, DrugStart, DrugEnd)))))) %>%
unnest(interval) %>%
mutate(DrugUse = DrugStart < int_end(interval) amp; DrugEnd > int_start(interval)) %>%
group_by(ID, interval) %>%
summarise(IndexDate = first(IndexDate),
CensorDate = first(CensorDate),
DrugUse = if_else(sum(DrugUse) > 0, 2, 1)) %>%
ungroup() %>%
filter(int_end(interval) <= CensorDate,
int_start(interval) >= IndexDate) %>%
mutate(TimeStart = as.numeric(difftime(int_start(interval), IndexDate, units = "days")),
TimeEnd = as.numeric(difftime(int_end(interval), IndexDate, units = "days"))) %>%
group_by(ID, data.table::rleid(DrugUse)) %>%
summarise(TimeStart = min(TimeStart),
TimeEnd = max(TimeEnd),
DrugUse = first(DrugUse)) %>%
select(ID, TimeStart, TimeEnd, DrugUse)
что дает
ID TimeStart TimeEnd DrugUse
<dbl> <dbl> <dbl> <dbl>
1 1 0 31 1
2 1 31 45 2
3 1 45 59 1
4 1 59 119 2
5 1 119 151 1
6 1 151 155 2
7 1 155 180 1
8 2 0 14 2
9 2 14 15 1
10 2 15 29 2
11 2 29 90 1
12 3 0 4 1
13 3 4 14 2
14 3 14 183 1
Комментарии:
1. В 3-й записи,
2019-02-15 UTC--2019-06-30 UTC
,DrugUse=1
. Это кажется неправильным. Для субъекта имеются записи об употреблении наркотиков от2019-04-01
до2019-04-30
и от2019-06-01
до2019-06-05
ID=1
.2. Вы правы, я отредактировал свой ответ. Это все еще не совсем то, что вы хотите, но мы ближе. Иногда возникает разовая ошибка в TimeStart или timeEnd.