#r #csv
#r #csv
Вопрос:
У меня есть следующие данные:
dat<- structure(list(Pentad = 1:73, RR = c(0, 0.014285714, 0, 0.088571429,
0.071428571, 0, 0.065714286, 0.028571429, 0.094285714, 0.011428571,
0, 0, 0, 0, 0, 0, 0.04, 0, 0.814285714, 0.285714286, 1.14, 5.334285714,
2.351428571, 1.985714286, 1.494285714, 2.005714286, 20.04857143,
25.00857143, 16.32, 11.06857143, 8.965714286, 3.985714286, 5.202857143,
7.802857143, 4.451428571, 9.22, 32.04857143, 19.50571429, 3.148571429,
2.434285714, 9.057142857, 28.70857143, 34.15142857, 33.02571429,
46.50571429, 70.61714286, 3.168571429, 1.928571429, 7.031428571,
0.902857143, 5.377142857, 11.35714286, 15.04571429, 11.66285714,
21.24, 11.43714286, 11.69428571, 2.977142857, 4.337142857, 0.871428571,
1.391428571, 0.871428571, 1.145714286, 2.317142857, 0.182857143,
0.282857143, 0.348571429, 0, 0.345714286, 0.142857143, 0.18,
4.894285714, 0.037142857), YY = c(0.577142857, 0, 1.282857143,
1.445714286, 0.111428571, 0.36, 0, 0, 0, 1, 0.011428571, 0.008571429,
0.305714286, 0, 0, 0, 0, 0.8, 0.062857143, 0, 0, 0, 0, 0.013333333,
0.043333333, 1.486666667, 0, 2.486666667, 1.943333333, 0.773333333,
8.106666667, 7.733333333, 0.5, 4.356666667, 2.66, 6.626666667,
4.404285714, 7.977142857, 12.94285714, 18.49428571, 7.357142857,
11.08285714, 9.034285714, 14.29142857, 34.61428571, 45.30285714,
6.66, 6.702857143, 5.962857143, 14.85428571, 2.1, 2.837142857,
7.391428571, 32.03714286, 9.005714286, 3.525714286, 12.32, 2.32,
7.994285714, 6.565714286, 4.771428571, 2.354285714, 0.005714286,
2.508571429, 0.817142857, 2.885714286, 0.897142857, 0, 0, 0,
0, 0.145714286, 0.434285714)), class = "data.frame", row.names = c(NA,
-73L))
Есть три столбца: Pentad, RR и YY.
Я хотел бы получить следующее:
(a) Получить первую пентаду, когда количество осадков превысит «среднегодовое значение» в «по крайней мере, трех последовательных пентадах»
(b) Получите последнюю пентаду, когда количество осадков превысит «среднегодовое значение» по крайней мере в трех последовательных пентадах, ПРЕЖДЕ чем опускать его ниже среднегодового значения.
Я смог выполнить (a), используя следующий скрипт:
first_exceed_seq <- function(x, thresh = mean(x), len = 3)
{
# Logical vector, does x exceed the threshold
exceed_thresh <- x > thresh
# Indices of transition points; where exceed_thresh[i - 1] != exceed_thresh[i]
transition <- which(diff(c(0, exceed_thresh)) != 0)
# Reference index, grouping observations after each transition
index <- vector("numeric", length(x))
index[transition] <- 1
index <- cumsum(index)
# Break x into groups following the transitions
exceed_list <- split(exceed_thresh, index)
# Get the number of values exceeded in each index period
num_exceed <- vapply(exceed_list, sum, numeric(1))
# Get the starting index of the first sequence where more then len exceed thresh
transition[as.numeric(names(which(num_exceed >= len))[1])]
}
first_exceed_seq(dat$RR)
Вот график временного ряда:
Правильный ответ в (a) — 27.
Я хотел бы спросить, как я могу это сделать для (b). Правильный ответ для (b) должен быть 57.
Я буду признателен за любую помощь в этом в R.
Комментарии:
1. На всякий случай, RR — это количество осадков, а среднегодовое значение — это среднее значение RR, правильно?
2. Разве вы не можете сделать что-то вроде:
length(dat$RR) - first_exceed_seq(rev(dat$RR)) 1
?3. @MarcioRodrigues да!!
4. @Mako БОЖЕ мой! да!!
Ответ №1:
Я не знаю, правильно ли я понял вашу проблему.
Это то, что я пробовал:
dat %>%
mutate(
anual_mean = mean(RR),
exceed_thresh = RR > anual_mean,
lag1 = lag(exceed_thresh, 1),
lag2 = lag(exceed_thresh, 2),
pick_3 = ifelse(exceed_thresh amp; lag1 amp; lag2, RR, NA)
)