#fast-ai
#быстрый ии
Вопрос:
В fastai v2 я пытаюсь добавить дополнения к изображению
Итак
tfms = aug_transforms(do_flip = True,
flip_vert=True,
max_lighting=0.1,
)
data = ImageDataLoaders.from_df(df,bs=5,item_tfms=tfms,folder=path_to_data)
это дает результат
Could not do one pass in your dataloader, there is something wrong in it
И когда я делаю
data.show_batch()
это дает
RuntimeError: "check_uniform_bounds" not implemented for 'Byte'
Как решить
Комментарии:
1. Вы когда-нибудь это понимали? Я столкнулся с той же проблемой. Кажется, я могу выполнять отступы и обрезку, но что-то более экзотическое вызывает ту же ошибку.
2. LOL нет. Возможно, путем голосования мы сможем дать ответ на этот вопрос
Ответ №1:
Я не пробовал преобразование do_flip, но для меня сработало то, что я применил их не как item_tfms, а как batch_tfms:
item_tfms = [ Resize((200, 150), method='squish')]
batch_tfms = [Brightness(max_lighting = 0.3, p = 0.4),
Contrast(max_lighting = 0.6, p = 0.4),
Saturation(max_lighting = 0.75, p = 0.4)]
db = DataBlock(blocks = (ImageBlock, CategoryBlock),
get_items = get_image_files,
splitter = RandomSplitter(valid_pct=0.2, seed=42),
item_tfms=item_tfms,
batch_tfms=batch_tfms,
get_y = parent_label)
Затем вы можете загрузить блок данных в программу загрузки данных, как в учебном пособии по fastbook
Комментарии:
1. Постараюсь вас проинформировать. Спасибо Вам за rply
2. Поражает воображение . Иногда это самые простые вещи.
3. @JudoWill и orozco получили ответ, который может помочь нам это проверить
Ответ №2:
Я получил это из документов fastai. Добавление материалов, связанных с вопросом, вы можете проверить здесь все, что связано с augs
class AlbumentationsTransform(RandTransform):
"A transform handler for multiple `Albumentation` transforms"
split_idx,order=None,2
def __init__(self, train_aug, valid_aug): store_attr()
def before_call(self, b, split_idx):
self.idx = split_idx
def encodes(self, img: PILImage):
if self.idx == 0:
aug_img = self.train_aug(image=np.array(img))['image']
else:
aug_img = self.valid_aug(image=np.array(img))['image']
return PILImage.create(aug_img)
В принципе, это все, что вам нужно
Для настройки расширений различий используйте
def get_train_aug(): return albumentations.Compose([
albumentations.RandomResizedCrop(224,224),
albumentations.Transpose(p=0.5),
])
def get_valid_aug(): return albumentations.Compose([
albumentations.CenterCrop(224,224, p=1.),
albumentations.Resize(224,224)
], p=1.)
И затем
item_tfms = [Resize(256), AlbumentationsTransform(get_train_aug(), get_valid_aug())]
dls = ImageDataLoaders.from_name_func(
path, get_image_files(path), valid_pct=0.2, seed=42,
label_func=is_cat, item_tfms=item_tfms)
dls.train.show_batch(max_n=4)
Наслаждайтесь