Я не могу заставить пакет DT корректно работать на Rshiny

#r #shiny #classification #dt

#r #блестящий #классификация #dt

Вопрос:

В настоящее время я работаю над веб-приложением Rshiny для использования для некоторой простой классификации. В настоящее время я работаю над созданием таблицы, которая содержит CCR и MCR методов CART и LDA для данных. Затем моя цель — выделить столбец MCR и CCR наилучшего метода (метод с наибольшим CCR … или наименьшим MCR). Я запустил код и убедился, что он работает правильно, используя панель просмотра. Однако, когда я загружаю приложение, я получаю сообщение об ошибке «данные» должны быть 2-мерными (например, фрейм данных или матрица).

Вот мой код:

 data <- read.csv("Fatality-task2.csv")

data$Rate <- as.factor(data$Rate)

library(shiny)
library(dplyr)
library(ggplot2)
library(markdown)
library(gtsummary)
library(ggdendro)
library(factoextra)
library(mclust)
library(cluster)
library(rpart)
library(rpart.plot)
library(DT)
#library(MASS)

glimpse(data)

#################################################################


ui <- fluidPage(
  navbarPage("",
             tabPanel("Data Exploration",
                      sidebarLayout(
                        sidebarPanel(
                          selectInput("variable",
                                      "Variable",
                                      colnames(data)),
                          selectInput("rate",
                                      "Rate",
                                      levels(data$Rate))
                        ),
                        mainPanel(
                          tableOutput("table"),
                          plotOutput("plot")
                        )
                      )
             ),
             tabPanel("Classification tools",
                      sidebarLayout(
                        sidebarPanel(
                          sliderInput("train.prop",
                                      "Training data proportion",
                                      min = 0.4,
                                      max = 0.8,
                                      step = 0.1,
                                      value = 0.6),
                          radioButtons("prune",
                                       "Pruning option",
                                       choices = c("view pruned tree",
                                                   "view unpruned tree"))
                        ),
                        mainPanel(
                          DTOutput("table2"),
                          plotOutput("plot2")
                          
                        )
                      )
             )
  )
)




#################################################################

server <- function(input, output) {

  
  output$table <- renderTable({
    req(input$variable,input$rate)
    data <- data %>%
      filter(Rate == input$rate) %>%
      dplyr::select(input$variable) %>%
      summary() %>%
      as.data.frame() %>%
      tidyr::separate(Freq, c("Stat", "Value"), sep=":") %>%
      tidyr::pivot_wider(names_from =Stat, values_from = Value)
    data <- data[, -c(1,2)]
  })
  
  output$plot <- renderPlot({
    req(input$variable)
    if (input$variable == "jaild" | input$variable == "Rate"){
      ggplot(data, aes(x = Rate, fill = .data[[as.name(input$variable)]]))  
        geom_bar(position = "dodge", width = 0.7)  
        if (input$variable == "Rate"){
          theme(legend.position = "none")
        }
    } else {
      ggplot(data, aes(x = Rate, y = .data[[as.name(input$variable)]], fill = Rate))  
        geom_boxplot()  
        theme(legend.position = "none")
    }
    
    
  })
  
  output$plot2 <- renderPlot({
    req(input$train.prop,input$prune)
    set.seed(1234)
    n <- nrow(data)
    ind1 <- sample(c(1:n), round(n*as.numeric(input$train.prop)))
    ind2 <- sample(c(1:n)[-ind1], length(c(1:n)[-ind1]))
    
    
    train.data <- data[ind1,]
    valid.data <- data[ind2,]
    
    
    fit.tree <- rpart(Rate~., data = train.data, method = "class")
    
    ptree <- prune(fit.tree, cp = fit.tree$cptable[which.min(fit.tree$cptable[,"xerror"]),"CP"])
    
    if (input$prune == "view pruned tree"){
      rpart.plot(ptree, uniform =TRUE)
    } else {
      rpart.plot(fit.tree)
    }
  })
  
  output$table2 <- DT::renderDT({
    library(MASS)
    set.seed(1234)
    n <- nrow(data)
    ind1 <- sample(c(1:n), round(n*0.6))
    #ind2 <- sample(c(1:n)[-ind1], length(c(1:n)[-ind1]))
    ind2 <- setdiff(c(1:n), ind1)
    
    train.data <- data[ind1,]
    valid.data <- data[ind2,]
    
    #################################
    
    ### fit cart model
    fit.tree <- rpart(Rate~., data = train.data, method = "class")
    
    ### prune the tree
    ptree <- prune(fit.tree, cp = fit.tree$cptable[which.min(fit.tree$cptable[,"xerror"]),"CP"])
    
    ### predict using the validation data on the pruned tree
    pred <- predict(ptree, newdata = valid.data[,-6], type = "class")
    
    ### lda
    
    #lda.model <- lda(train.data[,-6], train.data[,6])
    
    lda.model <- lda(Rate~., data = train.data)
    
    
    lda.pred <- predict(lda.model, newdata = valid.data[,-6])
    
    
    ### create a classification table
    
    length(lda.model)
    
    
    x <- pred == valid.data[,6]
    
    CCR <- length(x[x == TRUE])/nrow(valid.data)
    MCR <- 1 - CCR
    
    CR <- c(CCR, MCR)
    
    z <- lda.pred$class == valid.data[,6]
    
    lda.CCR <- length(z[z == TRUE])/nrow(valid.data)
    lda.MCR <- 1 - lda.CCR
    
    lda.CR <- c(lda.CCR, lda.MCR)
    
    y <- cbind(CR, lda.CR)
    
    y <- as.data.frame(y)
    colnames(y) <- c("CART", "LDA")
    rownames(y) <- c("CCR", "MCR")
    #y
    

    DT::datatable(y, options=list(dom = "t")) %>%
      formatRound(columns = c(1,2), digits = 6) %>%
      formatStyle(columns = colnames(y[which.max(y[1,])]), background = "green")
      

    #colnames(y[1])
    #colnames(y[which.max(y[1,])])
  },
  rownames = TRUE) 
  
}

?formatStyle
?formatRound()

#################################################################
shinyApp(ui, server)
 

и вот некоторые из моих данных:

 "beertax","jaild","vmiles","unrate","perinc","Rate"
1.53937947750092,"no",7.23388720703125,14.3999996185303,10544.15234375,1
1.78899073600769,"no",7.83634765625,13.6999998092651,10732.7978515625,1
1.71428561210632,"no",8.262990234375,11.1000003814697,11108.791015625,1
1.65254235267639,"no",8.7269169921875,8.89999961853027,11332.626953125,1
1.60990703105927,"no",8.952853515625,9.80000019073486,11661.5068359375,1
1.55999994277954,"no",9.1663017578125,7.80000019073486,11944,1
1.50144362449646,"no",9.6743232421875,7.19999980926514,12368.6240234375,1
0.214797139167786,"yes",6.81015673828125,9.89999961853027,12309.0693359375,1
0.206422030925751,"yes",6.58749462890625,9.10000038146973,12693.8076171875,1
0.296703308820724,"yes",6.70997021484375,5,13265.93359375,1
0.381355941295624,"yes",6.7712626953125,6.5,13726.6953125,1
0.371517032384872,"yes",8.1290078125,6.90000009536743,14107.3271484375,1
0.360000014305115,"yes",9.370654296875,6.19999980926514,14241,1
0.346487015485764,"yes",9.815720703125,6.30000019073486,14408.0849609375,1
0.650358021259308,"no",7.20850048828125,9.80000019073486,10267.302734375,1
0.67545872926712,"no",7.1759169921875,10.1000003814697,10433.486328125,1
0.598901093006134,"no",7.08481982421875,8.89999961853027,10916.4833984375,1
0.577330529689789,"no",7.25391796875,8.69999980926514,11149.3642578125,1
0.562435507774353,"no",7.4689990234375,8.69999980926514,11399.380859375,1
0.545000016689301,"no",7.66583056640625,8.10000038146973,11537,1
0.52454286813736,"no",8.02462548828125,7.69999980926514,11760.3466796875,1
0.107398569583893,"no",6.8586767578125,9.89999961853027,15797.1357421875,0
0.103211015462875,"no",7.21629150390625,9.69999980926514,15970.18359375,0
0.0989011004567146,"no",7.61917578125,7.80000019073486,16590.109375,0
0.0953389853239059,"no",7.87406689453125,7.19999980926514,16985.169921875,0
0.0928792580962181,"no",8.03491015625,6.69999980926514,17356.037109375,0
0.0900000035762787,"no",8.18063330078125,5.80000019073486,17846,0
0.0866217538714409,"no",8.531990234375,5.30000019073486,18049.0859375,0
0.214797139167786,"no",7.742841796875,7.69999980926514,15082.3388671875,1
0.206422030925751,"no",7.65606298828125,6.59999990463257,15131.880859375,1
0.197802200913429,"no",7.7078525390625,5.59999990463257,15486.8134765625,0
0.190677970647812,"no",8.09220947265625,5.90000009536743,15569.9150390625,0
0.185758516192436,"no",8.13137451171875,7.40000009536743,15616.0986328125,0
0.180000007152557,"no",8.18202783203125,7.69999980926514,15605,0
0.173243507742882,"no",8.3807685546875,6.40000009536743,15845.04296875,0
0.224343672394753,"no",6.4400537109375,6.90000009536743,17255.369140625,0
0.233563080430031,"no",6.57004296875,6,17744.265625,0
0.248010993003845,"no",6.68019287109375,4.59999990463257,18760.439453125,0
0.239078402519226,"yes",6.97921484375,4.90000009536743,19312.5,0
 

Я знаю, что код работает правильно — я просто хочу, чтобы он мог правильно работать в приложении. Пожалуйста, помогите!

Комментарии:

1. вы только что вставили все свое блестящее приложение? Сначала попробуйте создать минимально воспроизводимый пример, который действительно может помочь решить множество проблем с кодом напрямую и облегчить задачу людям, которые помогают

2. Ваш код отлично работает в RStudio. Вы получаете эту ошибку при развертывании на Shiny server? В этом случае вам может потребоваться указать, где находится ваш csv-файл.

3. Извините, но что именно вы имеете в виду, говоря о файле csv?