#r
#r
Вопрос:
Я пытаюсь уменьшить значения для каждой ковариации среды обитания относительно 2019 и 2010 годов. Итак, что-то, что может присваивать по идентификатору те значения, которые принадлежат каждой среде обитания за 2010 и 2019 годы, минус их, в противном случае те, которые не сгруппированы по идентификатору, остаются как есть во фрейме данных.
Вот пример набора данных и то, что я ожидаю от результата:
#dataset example
# A tibble: 30 x 18
id year pland_00_water pland_01_evergr~ pland_02_evergr~ pland_03_decidu~ pland_04_decidu~ pland_05_mixed_~ pland_06_closed~
<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 267 2019 0.0833 0 0 0 0 0 0
2 268 2019 0.2 0 0 0 0 0 0
3 362 2019 0.1 0 0 0 0 0 0
4 420 2019 0.0556 0 0 0 0 0 0
5 421 2019 0.0667 0 0 0 0 0 0
6 484 2019 0.125 0 0 0 0 0 0
7 492 2010 0.1 0 0 0 0 0 0
8 492 2019 0.1 0 0 0 0 0 0
9 719 2010 0.0769 0 0 0 0 0 0
10 719 2019 0.0769 0 0 0 0 0 0
#output example
# A tibble: 30 x 18
id year pland_00_water pland_01_evergr~ pland_02_evergr~ pland_03_decidu~ pland_04_decidu~ pland_05_mixed_~ pland_06_closed~
<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 267 2019 0.0833 0 0 0 0 0 0
2 268 2019 0.2 0 0 0 0 0 0
3 362 2019 0.1 0 0 0 0 0 0
4 420 2019 0.0556 0 0 0 0 0 0
5 421 2019 0.0667 0 0 0 0 0 0
6 484 2019 0.125 0 0 0 0 0 0
7 492 changed 0 0 0 0 0 0 0
9 719 changed 0 0 0 0 0 0 0
Я могу представить, что это работает с функцией и логическими операторами таким образом, что, если year
2010 и 2019 совпадают к id
тому времени, следующая строка минус предыдущая (при условии, что они упорядочены к id
тому времени, это должно сработать), в противном случае, если они не совпадают по идентификатору, оставьте их как есть.
Я пытаюсь разобраться, какой код использовать для этого, я вижу, что это работает внутри функции и используется lapply
для применения ко всему набору данных.
Вот воспроизводимый код:
structure(list(id = c(267L, 268L, 362L, 420L, 421L, 484L, 492L,
492L, 719L, 719L, 986L, 986L, 1071L, 1071L, 1303L, 1303L, 1306L,
1399L, 1399L, 1400L, 1400L, 2007L, 2083L, 2083L, 2134L, 2135L,
2136L, 2213L, 2213L, 2214L), year = c(2019, 2019, 2019, 2019,
2019, 2019, 2010, 2019, 2010, 2019, 2010, 2019, 2010, 2019, 2010,
2019, 2010, 2010, 2019, 2010, 2019, 2019, 2010, 2019, 2019, 2019,
2019, 2010, 2019, 2010), pland_00_water = c(0.0833333333333333,
0.2, 0.1, 0.0555555555555556, 0.0666666666666667, 0.125, 0.1,
0.1, 0.0769230769230769, 0.0769230769230769, 0.0588235294117647,
0.0588235294117647, 0.0714285714285714, 0.0714285714285714, 0.0769230769230769,
0.0769230769230769, 0.0588235294117647, 0.05, 0.05, 0.111111111111111,
0.111111111111111, 0.0526315789473684, 0.142857142857143, 0.142857142857143,
0.0666666666666667, 0.0588235294117647, 0.1, 0.142857142857143,
0.142857142857143, 0.25), pland_01_evergreen_needleleaf = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0588235294117647, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), pland_02_evergreen_broadleaf = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0), pland_03_deciduous_needleleaf = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0714285714285714, 0, 0,
0, 0, 0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), pland_04_deciduous_broadleaf = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0714285714285714, 0.0714285714285714,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), pland_05_mixed_forest = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0), pland_06_closed_shrubland = c(0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), pland_07_open_shrubland = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0), pland_08_woody_savanna = c(0, 0, 0, 0, 0, 0,
0, 0, 0.0769230769230769, 0.0769230769230769, 0.0588235294117647,
0.0588235294117647, 0.0714285714285714, 0.0714285714285714, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), pland_09_savanna = c(0,
0, 0, 0, 0, 0, 0, 0, 0.0769230769230769, 0.0769230769230769,
0.0588235294117647, 0.0588235294117647, 0, 0, 0, 0.0769230769230769,
0.0588235294117647, 0.05, 0.05, 0.111111111111111, 0.111111111111111,
0, 0, 0, 0, 0, 0, 0, 0, 0), pland_10_grassland = c(0.0833333333333333,
0.2, 0.1, 0.0555555555555556, 0.0666666666666667, 0.125, 0.1,
0.1, 0.0769230769230769, 0.0769230769230769, 0.0588235294117647,
0.0588235294117647, 0.0714285714285714, 0.0714285714285714, 0.0769230769230769,
0.0769230769230769, 0.0588235294117647, 0.05, 0.05, 0.111111111111111,
0.111111111111111, 0.0526315789473684, 0.142857142857143, 0.142857142857143,
0.0666666666666667, 0.0588235294117647, 0.1, 0.142857142857143,
0.142857142857143, 0.25), pland_11_wetland = c(0.0833333333333333,
0.2, 0.1, 0.0555555555555556, 0, 0, 0.1, 0.1, 0.0769230769230769,
0.0769230769230769, 0.0588235294117647, 0.0588235294117647, 0.0714285714285714,
0.0714285714285714, 0.0769230769230769, 0.0769230769230769, 0.0588235294117647,
0.05, 0.05, 0.111111111111111, 0, 0.0526315789473684, 0.142857142857143,
0.142857142857143, 0.0666666666666667, 0.0588235294117647, 0.1,
0.142857142857143, 0.142857142857143, 0), pland_12_cropland = c(0.0833333333333333,
0.2, 0.1, 0.0555555555555556, 0.0666666666666667, 0.125, 0.1,
0.1, 0.0769230769230769, 0.0769230769230769, 0.0588235294117647,
0, 0, 0, 0.0769230769230769, 0.0769230769230769, 0.0588235294117647,
0.05, 0.05, 0.111111111111111, 0.111111111111111, 0.0526315789473684,
0.142857142857143, 0.142857142857143, 0.0666666666666667, 0,
0, 0.142857142857143, 0.142857142857143, 0.25), pland_13_urban = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0), pland_14_mosiac = c(0, 0, 0, 0, 0, 0,
0, 0, 0.0769230769230769, 0.0769230769230769, 0, 0.0588235294117647,
0, 0, 0, 0, 0, 0.05, 0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
pland_15_barren = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), row.names = c(NA,
-30L), class = c("tbl_df", "tbl", "data.frame"))
Ответ №1:
Вот версия tidyverse:
library(dplyr)
x %>%
arrange(year) %>%
# can add 'id' if desired, minimum 'year' required for below
group_by(id) %>%
filter(
all(c("2010", "2019") %in% year),
year %in% c("2010", "2019")
) %>%
summarize_at(vars(-year), diff) %>%
mutate(year = "changed") %>%
ungroup() %>%
bind_rows(x, .) %>%
arrange(id, year) # just to show id=492
# # A tibble: 39 x 18
# id year pland_00_water pland_01_evergr~ pland_02_evergr~ pland_03_decidu~ pland_04_decidu~ pland_05_mixed_~
# <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 267 2019 0.0833 0 0 0 0 0
# 2 268 2019 0.2 0 0 0 0 0
# 3 362 2019 0.1 0 0 0 0 0
# 4 420 2019 0.0556 0 0 0 0 0
# 5 421 2019 0.0667 0 0 0 0 0
# 6 484 2019 0.125 0 0 0 0 0
# 7 492 2010 0.1 0 0 0 0 0
# 8 492 2019 0.1 0 0 0 0 0
# 9 492 chan~ 0 0 0 0 0 0
# 10 719 2010 0.0769 0 0 0 0 0
# # ... with 29 more rows, and 10 more variables: pland_06_closed_shrubland <dbl>, pland_07_open_shrubland <dbl>,
# # pland_08_woody_savanna <dbl>, pland_09_savanna <dbl>, pland_10_grassland <dbl>, pland_11_wetland <dbl>,
# # pland_12_cropland <dbl>, pland_13_urban <dbl>, pland_14_mosiac <dbl>, pland_15_barren <dbl>
Объяснение:
- первый
arrange(year)
заключается в том, чтоdiff
более поздние будут иметь значения в ожидаемом порядке (при условии, что все годы являются подобными годам, которые сортируются лексикографически так же, как числовая сортировка); filter
первый удаляет все идентификаторы, у которых нет обоих лет, а затем гарантирует, что у нас есть только эти два года; в то время как ваши данные содержат только"2010"
и"2019"
, я не хотел этого предполагать… это безвредный фильтр, если это все, что у вас есть, удалитеyear %in% c("2010","2019")
его при желании и безопасно;- Я предполагаю, что столбцы, отличные от
id
иyear
, являются числовыми / целочисленными, поэтомуsummarize_at(vars(-year), diff)
безопасны (id
не рассматриваются, поскольку это группирующая переменная); если есть нечисловые значения, вы можете использоватьsummarize_if(is.numeric, diff)
, что также работает здесь… но будет автоматическиNA
удалять нечисловые поля, если они присутствуют; bind_rows(x, .)
необходим, потомуfilter
что удалено много строк, которые мы хотим / должны сохранить; и- последнее
arrange(id,year)
является исключительно демонстративным для этого ответа.
Комментарии:
1. Когда я добираюсь до
bind_rows(x, .)
него, он возвращает мне эту ошибку:Error: Can't combine `..1$year` <double> and `..2$year` <character>.
2. Это потому, что вы изменили свои примерные данные со
"year"
строковых (которые я использовал) на числовые. Вы выбираете: если вам нужны числа, затем измените одну строку наmutate(year = NA_real_)
. Если вы хотите"changed"
, то не пытайтесь использовать числа.3. Спасибо, я только что заметил это перед вашим ответом. Я всего лишь пытался привести пример, используя
character: changed
, однако, мне следовало бы продумать его более кратко. Тем не менее, вы дали be хорошую основу для дальнейшего продвижения этого кода. Спасибо.4. Рад, что это помогает, в любом случае работает. Я думал о том, чтобы прокомментировать использование строк для
"year"
(поскольку оно отражает непрерывную или порядковую переменную), но подумал, что ваша потребность в литерале"changed"
вытеснила это предпочтение. Я предпочитаюinteger
character
, иnumeric
это достаточно близко для большинства вещей. С учетом этого я рекомендую перейтиyear=NA_real_
к различиям. Если вам нужна метка «изменено» где-нибудь, вы можете добавить еще один столбец, содержащий"raw"
"diff"
метки и … или похожие.