#python #constraint-programming #or-tools
#python #ограничение-программирование #или-tools
Вопрос:
Я новичок в Google OR-Tools (и программировании ограничений в целом), и я пытаюсь добавить время простоя в пример Jobshop.
Пример магазина вакансий, который я взял, можно найти здесь: https://developers.google.com/optimization/scheduling/job_shop#entire-program
Я внес некоторые изменения, поскольку включил переменную крайнего срока. Теперь единственное, что я хочу добавить в программу, — это переменная idle. Например, машина, которая завершает задачу, должна иметь определенное время простоя перед запуском следующей задачи. Как я мог бы реализовать это в коде? Мой код:
import collections
# Import Python wrapper for or-tools CP-SAT solver.
from ortools.sat.python import cp_model
def MinimalJobshopSat():
"""Minimal jobshop problem."""
# Create the model.
model = cp_model.CpModel()
jobs_data = [ # task = (machine_id, processing_time,deadline).
[(0, 3, 7), (1, 2, 7), (2, 2, 7)], # Job0
[(0, 2, 13), (2, 1, 13), (1, 4, 13)], # Job1
[(1, 4, 13), (2, 3, 13)] # Job2
]
#counts the number of machines (3 in this case)
machines_count = 1 max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)
# Named tuple to store information about created variables.
task_type = collections.namedtuple('task_type', 'start end deadline interval')
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple('assigned_task_type',
'start job index duration')
# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
duration = task[1]
deadline = task[2]
suffix = '_%i_%i' % (job_id, task_id)
start_var = model.NewIntVar(0, horizon, 'start' suffix)
end_var = model.NewIntVar(0, deadline, 'end' suffix)
interval_var = model.NewIntervalVar(start_var, duration, end_var,
'interval' suffix)
deadline_var = model.NewIntVar(deadline, deadline,
'deadline' suffix)
all_tasks[job_id, task_id] = task_type(
start=start_var, end=end_var, deadline=deadline_var, interval=interval_var)
machine_to_intervals[machine].append(interval_var)
# Create and add disjunctive constraints.
for machine in all_machines:
model.AddNoOverlap(machine_to_intervals[machine])
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id
1].start >= all_tasks[job_id, task_id].end)
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id].end <= all_tasks[job_id, task_id].deadline)
# Makespan objective.
obj_var = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(obj_var, [
all_tasks[job_id, len(job) - 1].end
for job_id, job in enumerate(jobs_data)
])
model.Minimize(obj_var)
# Solve model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
# Create one list of assigned tasks per machine.
assigned_jobs = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
assigned_jobs[machine].append(
assigned_task_type(
start=solver.Value(all_tasks[job_id, task_id].start),
job=job_id,
index=task_id,
duration=task[1]))
# Create per machine output lines.
output = ''
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line_tasks = 'Machine ' str(machine) ': '
sol_line = ' '
for assigned_task in assigned_jobs[machine]:
name = 'job_%i_%i' % (assigned_task.job, assigned_task.index)
# Add spaces to output to align columns.
sol_line_tasks = '%-10s' % name
start = assigned_task.start
duration = assigned_task.duration
sol_tmp = '[%i,%i]' % (start, start duration)
# Add spaces to output to align columns.
sol_line = '%-10s' % sol_tmp
sol_line = 'n'
sol_line_tasks = 'n'
output = sol_line_tasks
output = sol_line
# Finally print the solution found.
print('Optimal Schedule Length: %i' % solver.ObjectiveValue())
print(output)
MinimalJobshopSat()
Ответ №1:
Вы можете просто изменить это ограничение:
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id
1].start >= all_tasks[job_id, task_id].end)
Для
model.Add(all_tasks[job_id, task_id
1].start >= all_tasks[job_id, task_id].end idle_time)
Более сложный пример (расстояние между задачами) см.: https://github.com/google/or-tools/blob/stable/examples/python/jobshop_ft06_distance_sat.py