#r #split #latitude-longitude #col
#r #разделить #широта-долгота #col
Вопрос:
У меня есть данные о местоположении животных, и я хочу знать домашний диапазон каждой группы точек. Для этого мне нужно разделить данные на группы областей. Местоположения выглядят следующим образом:
Каждая близлежащая точка образует «область поиска» (ARS). И мне нужно разделить группы на фрейме данных. Я думал о разделении данных в соответствии с разницей в широте и долготе. Если местоположения отличаются более чем на 1 градус как по широте, так и по долготе, они будут принадлежать к разным группам (ARS1, ARS2, ARS3 …).
Часть моих данных:
dput(head(ARS_mcpAA, 100))
structure(list(lon = c(-25.3106, -25.3536, -25.3753, -25.4123,
-25.4445, -25.4745, -25.5087, -25.5394, -25.5558, -25.5853, -25.6008,
-25.6122, -25.6245, -25.6513, -25.6137, -25.6156, -25.0399, -25.057,
-25.0611, -25.0772, -25.0942, -25.1058, -25.1525, -25.1343, -25.2867,
-25.3316, -25.3101, -25.346, -25.339, -25.3323, -25.3242, -25.3095,
-29.1603, -29.1141, -29.0616, -29.0001, -29, -28.9444, -28.8759,
-28.8156, -28.7648, -28.7036, -28.6464, -28.599, -28.5997, -28.4939,
-28.4277, -28.3556, -28.286, -28.2096, -28.1324, -28.1, -27.9,
-27.916, -27.8881, -27.8634, -27.8379, -27.8198, -27.8029, -27.7533,
-27.7996, -27.844, -27.8933, -27.9441, -27.9914, -28.047, -28.0964,
-28.1056, -28.2, -28.2624, -28.2586, -28.2485, -28.2558, -28.2533,
-28.2534, -28.2934, -28.2977, -28.2285, -28.1912, -28.1556, -28.1207,
-28.0847, -28.0311, -27.9999, -27.8999, -28.0039, -26.6698, -26.6115,
-26.6087, -26.6469, -26.6833, -26.7237, -26.7557, -26.7865, -26.8144,
-26.7555, -26.8862, -26.8486, -26.8508, -26.842), lat = c(-51.91975,
-51.94013, -51.96147, -51.97386, -51.98679, -52.00712, -52.01164,
-52.01192, -52.00469, -51.98914, -51.97125, -51.96493, -51.93765,
-51.93972, -51.92433, -51.93924, -54.6441, -54.61579, -54.60819,
-54.57326, -54.55675, -54.53017, -54.50315, -54.50552, -54.37702,
-54.63709, -54.55168, -54.57639, -54.55191, -54.54964, -54.53068,
-54.53434, -52.3707, -52.33346, -52.29154, -52.26176, -52.20485,
-52.2329, -52.2451, -52.26278, -52.28739, -52.30114, -52.31802,
-52.33401, -52.34195, -52.39641, -52.44113, -52.48227, -52.52482,
-52.5623, -52.60991, -52.65369, -52.70683, -52.72654, -52.76817,
-52.78996, -52.82452, -52.8552, -52.88773, -52.93046, -52.89812,
-52.92588, -52.93636, -52.95839, -52.98223, -52.99873, -53.01708,
-53.03776, -53.05409, -52.91672, -52.97992, -52.99798, -53.01391,
-53.03261, -53.05399, -53.06071, -53.12244, -53.14963, -53.19108,
-53.23538, -53.26971, -53.30717, -53.34671, -53.38771, -53.47304,
-53.28979, -58.43823, -58.42534, -58.48206, -58.55891, -58.634,
-58.70886, -58.7826, -58.84814, -58.9177, -58.97309, -58.90135,
-58.89638, -58.87163, -58.84972), date = structure(c(1135987200,
1136008800, 1136030400, 1136052000, 1136073600, 1136095200, 1136116800,
1136138400, 1136160000, 1136181600, 1136203200, 1136224800, 1136246400,
1136268000, 1136289600, 1136311200, 1137844800, 1137866400, 1137888000,
1137909600, 1137931200, 1137952800, 1137974400, 1137996000, 1138017600,
1138039200, 1138060800, 1138082400, 1138104000, 1138125600, 1138147200,
1138168800, 1076328000, 1076349600, 1076371200, 1076392800, 1076414400,
1076436000, 1076457600, 1076479200, 1076500800, 1076522400, 1076544000,
1076565600, 1076587200, 1076608800, 1076630400, 1076652000, 1076673600,
1076695200, 1076716800, 1076738400, 1076760000, 1076781600, 1076803200,
1076824800, 1076846400, 1076868000, 1076889600, 1076911200, 1076932800,
1076954400, 1076976000, 1076997600, 1077019200, 1077040800, 1077062400,
1077084000, 1077105600, 1077127200, 1077148800, 1077170400, 1077192000,
1077213600, 1077235200, 1077256800, 1077278400, 1077300000, 1077321600,
1077343200, 1077364800, 1077386400, 1077408000, 1077429600, 1077451200,
1077472800, 1079157600, 1079179200, 1079200800, 1079222400, 1079244000,
1079265600, 1079287200, 1079308800, 1079330400, 1079352000, 1079373600,
1079395200, 1079416800, 1079438400), class = c("POSIXct", "POSIXt"
), tzone = "UTC"), dist = c(0.0475851279287978, 0.0304349404467916,
0.0390193810817139, 0.0346990619469767, 0.036239604026533, 0.0344973970032542,
0.030701276846411, 0.0179229712938488, 0.0333474511769618, 0.0236707012992862,
0.0130346614839044, 0.0299247121957797, 0.0268798232881078, 0.0406277257547101,
0.0150305721780646, 0.00797985588841956, 0.0330736466087464,
0.00863539228987056, 0.0384618629294038, 0.023697681321173, 0.029000972397492,
0.0539534095308177, 0.0183536617599868, 0.199343948992687, 0.263917439552599,
0.0880745031209411, 0.0435820387315739, 0.0254611547263713, 0.00707410064955216,
0.0206177496347195, 0.0151487821292691, 0.021062167504796, 0.0593401853721378,
0.0671828579326646, 0.068330801253897, 0.0569100878579556, 0.0622748946205438,
0.0695779419069006, 0.0628384627437698, 0.0564472505973499, 0.0627256127909468,
0.0596386988456339, 0.0500243950488163, 0.00797079669794453,
0.118993830092154, 0.0798894135665022, 0.0830115028173822, 0.0815761147640628,
0.0850982396997766, 0.0907003423367273, 0.0544651117689093, 0.20693926548628,
0.0253866913952999, 0.0501145378108964, 0.0329377306443578, 0.0429493143134998,
0.0356212352396748, 0.0366580264062267, 0.0654676477353514, 0.0564762392515655,
0.0523638959589525, 0.0504015912447207, 0.0553711197286087, 0.0529682508678546,
0.0579966378335868, 0.0526980312725228, 0.0226340981706792, 0.0958020297279769,
0.150878351329809, 0.0633141374418086, 0.0206923560765798, 0.0175229820521552,
0.018866372200289, 0.0213802338621453, 0.0405605522644842, 0.0618795838706084,
0.0743500914592581, 0.0557619269753112, 0.0568317692844406, 0.0489546616779272,
0.0519543222455989, 0.0666060928144003, 0.051521257748619, 0.131458011927764,
0.210704918072641, 0.159760502315181, 0.059707973504381, 0.0567890693707851,
0.0858205249343071, 0.083447397203271, 0.08506573693327, 0.0803840008957014,
0.0724163766008751, 0.0749466717072901, 0.0808533369750392, 0.149094324506331,
0.0379270470772485, 0.0248475853957656, 0.0236111859083836, 0.0232309298135001
), rel.angle = c(0.106513347035198, 0.334439915570008, -0.453905747296825,
0.0587159774608601, 0.213735099400068, -0.464177180158973, -0.122281927295341,
-0.424342114258423, -0.0698845746077619, -0.371748191325564,
0.350650295049063, -0.641006711093813, 1.2242967834437, -2.83017329955871,
-2.08604956048374, 2.66921593559173, 0.283390222061459, -0.0486494742037595,
-0.0628263599018446, 0.36812029951223, -0.388517409595585, 0.63476849426147,
-2.74655815919045, 2.57056484932375, 2.10035471937083, 3.06594981147763,
2.42023065260177, -2.45214272845483, -0.96561305678503, 0.840383076071263,
-1.41106893942014, 0.883530953328039, 0.0719694956610423, -0.00461442475790563,
-0.222860804884139, 1.1180888738886, -2.03627742601714, 0.290984176880082,
-0.108953175953151, -0.165922188166895, 0.230126074951815, -0.0659564740619957,
-0.0383939565100851, -1.33337638642423, 1.18335643742019, -0.118739040263186,
0.0755942344373712, -0.0302051793681526, 0.0926437762605385,
-0.0965356730785566, -0.381069041046937, 0.673984987648684, -1.9929737285283,
1.27231479544147, 0.257473004340075, -0.212232858892476, -0.102672758102347,
-0.0538633633428984, 0.380526587672785, -3.04017520665256, 1.16847181825348,
-0.349303088329756, 0.199725842196434, 0.0576719610123382, -0.178371920099785,
0.0671772431743056, 0.796551827477172, -0.980921026978409, -1.31570776715771,
2.77526627922122, 0.449860587075307, -0.93961230051551, 0.562599226036757,
-0.137579029347167, -1.39967339887862, 1.33480478410293, 1.26595490922361,
-0.463660607187198, -0.0558091080555709, 0.116692057337339, -0.0281053842880634,
0.169696485860272, -0.284733931036345, 0.213900986884742, 2.79340587604884,
-2.77615940242481, 2.98123184533383, -1.73906821939532, -0.510627903752983,
0.00992797229725539, -0.043506204386766, 0.0854479709513727,
-0.0298804936847927, 0.057865493684973, 1.19754776476618, -2.88888724541044,
-2.50818258642514, 1.52803319844474, -0.470577908840144, 0.0303559881900255
), id = structure(c(61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L,
61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L,
61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 61L, 62L, 62L, 62L,
62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L,
62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L,
62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L,
62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L,
62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L, 62L
), .Label = c("102211.1", "10946.05", "111868.11", "111868.16",
"111868.18", "111869.11", "111869.17", "111870.17", "111870.18",
"111871.12", "112694.12", "112696.17", "112696.18", "112702.12",
"112706.18", "112712.12", "112714.12", "112717.12", "112719.18",
"112728.17", "120937.17", "120938.16", "120938.18", "120942.17",
"120942.18", "120943.17", "120947.12", "120947.17", "121189.12",
"121191.17", "121191.18", "121192.12", "121193.12", "121195.12",
"121196.12", "121203.17", "121206.17", "123226.17", "171994.17",
"171994.18", "171995.18", "171997.17", "172000.17", "172001.17",
"172002.17", "172003.17", "172004.17", "172008.18", "194591.19",
"194593.19", "194601.19", "194603.19", "20162.03", "20687.03",
"21791.03", "21792.03", "21800.03", "21809.03", "21810.03", "24640.03",
"24641.05", "24642.03", "26712.05", "27258.05", "27259.03", "27259.05",
"27259.06", "27261.03", "27261.05", "27261.07", "33000.05", "33000.06",
"33001.05", "33001.06", "37229.05", "37229.06", "37230.06", "37231.05",
"37231.07", "37234.05", "37234.06", "37236.06", "37282.06", "37286.07",
"37288.06", "37288.07", "42521.06", "42521.07", "42525.07", "50682.06",
"50682.07", "50686.07", "50687.07", "60004.07", "60007.07", "7617.05",
"7618.05", "81122.09", "81123.09", "81124.09", "81125.09", "81126.09",
"84480.12", "84484.17", "84484.18", "84485.17", "84485.18", "84497.1",
"87624.1", "87631.1", "87632.12", "87635.17", "87640.18", "87759.08",
"87760.08", "87761.08", "87762.08", "87763.08", "87764.08", "87765.08",
"87766.08", "87767.08", "87768.08", "87768.11", "87769.11", "87770.08",
"87771.09", "87773.08", "87773.09", "87773.1", "87773.11", "87774.08",
"87774.09", "87774.11", "87775.08", "87775.12", "87776.08", "87776.11",
"87776.17", "87777.08", "87777.1", "87777.17", "87778.08", "87778.1",
"87780.17", "87781.1", "87783.09", "87783.11", "88719.09", "88720.09",
"88724.1", "88726.1", "88727.09", "96380.1"), class = "factor"),
sex = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("F", "I", "M"), class = "factor"), bmode = c(1.768,
1.777, 1.786, 1.797, 1.809, 1.819, 1.825, 1.834, 1.835, 1.825,
1.829, 1.814, 1.81, 1.788, 1.77, 1.756, 1.76, 1.769, 1.763,
1.779, 1.792, 1.803, 1.803, 1.804, 1.806, 1.796, 1.788, 1.778,
1.77, 1.766, 1.758, 1.759, 1.779, 1.803, 1.818, 1.83, 1.844,
1.853, 1.866, 1.88, 1.889, 1.899, 1.905, 1.911, 1.911, 1.917,
1.922, 1.923, 1.926, 1.929, 1.933, 1.934, 1.941, 1.954, 1.962,
1.973, 1.978, 1.978, 1.981, 1.978, 1.982, 1.977, 1.979, 1.978,
1.982, 1.983, 1.987, 1.987, 1.99, 1.992, 1.994, 1.998, 1.998,
1.998, 1.996, 1.988, 1.987, 1.984, 1.978, 1.972, 1.965, 1.947,
1.921, 1.9, 1.887, 1.838, 1.763, 1.784, 1.804, 1.83, 1.856,
1.88, 1.912, 1.936, 1.952, 1.969, 1.971, 1.976, 1.981, 1.985
), States = c("ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS", "ARS",
"ARS", "ARS", "ARS"), P.social = structure(c(3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("AD", "ES", "MO"), class = "factor"),
speed = c(0.0987785338176652, 0.621163236272065, 0.46737443745321,
0.482094695260082, 0.439839811658523, 0.509970388443175,
0.400258161791518, 0.351348638812241, 0.230656581779234,
0.44406144445384, 0.376258406322213, 0.175463566571892, 0.525157981324833,
0.30956994892586, 0.516954379069446, 0.277352730350368, 0.416367881852949,
0.556545727857693, 0.147751328581044, 0.670857953470755,
0.35694622341867, 0.508752251417488, 0.710888179427656, 0.201360320173994,
2.89810577083966, 4.8492124392412, 1.60142237502354, 0.599967372995461,
0.460394474267271, 0.0836336076104151, 0.362445490445855,
0.172527331594047, 0.919427499086957, 0.867326290481948,
0.980047933052306, 0.891324498156241, 1.05541346394103, 0.819561335470701,
0.81204751654776, 0.760602818130664, 0.736393570349541, 0.741161553616298,
0.721640595774542, 0.61484542933434, 0.147466838647452, 1.56926241826836,
1.11863422778971, 1.11769668256639, 1.11499040114756, 1.10880704547075,
1.2410421896502, 0.890487781181087, 2.46042440828464, 0.407560324266723,
0.833517643041561, 0.490404133213112, 0.702144217680251,
0.604248048783353, 0.632452716895545, 0.968208036748787,
0.793255912054127, 0.71618980841691, 0.585715764363412, 0.700608908232262,
0.689945541839451, 0.693458578016448, 0.649056436701069,
0.397125608022642, 1.09778243260286, 2.64189448291469, 1.17297789253428,
0.353531274231773, 0.306545511435053, 0.347968617007825,
0.396554554448462, 0.464040987552268, 1.14597421973919, 0.922031078060161,
0.874024525933582, 0.912304007037293, 0.74578852475807, 0.801808706863773,
0.944555925968514, 0.835572380144741, 1.931951597507, 3.58945506674896,
1.19948819048543, 0.616017636297669, 1.05331778713592, 1.47412838675097,
1.43796159328843, 1.44363713236628, 1.40338553152299, 1.25240326511581,
1.31896626726273, 1.17339663305369, 1.82953053479454, 0.372832449214159,
0.459982870116384, 0.415481099997895), timestamp_adjusted = structure(c(1135980000,
1136001600, 1136023200, 1136044800, 1136066400, 1136088000,
1136109600, 1136131200, 1136152800, 1136174400, 1136196000,
1136217600, 1136239200, 1136260800, 1136282400, 1136304000,
1137837600, 1137859200, 1137880800, 1137902400, 1137924000,
1137945600, 1137967200, 1137988800, 1138010400, 1138032000,
1138053600, 1138075200, 1138096800, 1138118400, 1138140000,
1138161600, 1076320800, 1076342400, 1076364000, 1076385600,
1076407200, 1076428800, 1076450400, 1076472000, 1076493600,
1076515200, 1076536800, 1076558400, 1076580000, 1076601600,
1076623200, 1076644800, 1076666400, 1076688000, 1076709600,
1076731200, 1076752800, 1076774400, 1076796000, 1076817600,
1076839200, 1076860800, 1076882400, 1076904000, 1076925600,
1076947200, 1076968800, 1076990400, 1077012000, 1077033600,
1077055200, 1077076800, 1077098400, 1077120000, 1077141600,
1077163200, 1077184800, 1077206400, 1077228000, 1077249600,
1077271200, 1077292800, 1077314400, 1077336000, 1077357600,
1077379200, 1077400800, 1077422400, 1077444000, 1077465600,
1079150400, 1079172000, 1079193600, 1079215200, 1079236800,
1079258400, 1079280000, 1079301600, 1079323200, 1079344800,
1079366400, 1079388000, 1079409600, 1079431200), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), TOD = c("22:00:00", "04:00:00",
"10:00:00", "16:00:00", "22:00:00", "04:00:00", "10:00:00",
"16:00:00", "22:00:00", "04:00:00", "10:00:00", "16:00:00",
"22:00:00", "04:00:00", "10:00:00", "16:00:00", "10:00:00",
"16:00:00", "22:00:00", "04:00:00", "10:00:00", "16:00:00",
"22:00:00", "04:00:00", "10:00:00", "16:00:00", "22:00:00",
"04:00:00", "10:00:00", "16:00:00", "22:00:00", "04:00:00",
"10:00:00", "16:00:00", "22:00:00", "04:00:00", "10:00:00",
"16:00:00", "22:00:00", "04:00:00", "10:00:00", "16:00:00",
"22:00:00", "04:00:00", "10:00:00", "16:00:00", "22:00:00",
"04:00:00", "10:00:00", "16:00:00", "22:00:00", "04:00:00",
"10:00:00", "16:00:00", "22:00:00", "04:00:00", "10:00:00",
"16:00:00", "22:00:00", "04:00:00", "10:00:00", "16:00:00",
"22:00:00", "04:00:00", "10:00:00", "16:00:00", "22:00:00",
"04:00:00", "10:00:00", "16:00:00", "22:00:00", "04:00:00",
"10:00:00", "16:00:00", "22:00:00", "04:00:00", "10:00:00",
"16:00:00", "22:00:00", "04:00:00", "10:00:00", "16:00:00",
"22:00:00", "04:00:00", "10:00:00", "16:00:00", "04:00:00",
"10:00:00", "16:00:00", "22:00:00", "04:00:00", "10:00:00",
"16:00:00", "22:00:00", "04:00:00", "10:00:00", "16:00:00",
"22:00:00", "04:00:00", "10:00:00"), YMD = c("2005,12,30",
"2005,12,31", "2005,12,31", "2005,12,31", "2005,12,31", "2006,01,01",
"2006,01,01", "2006,01,01", "2006,01,01", "2006,01,02", "2006,01,02",
"2006,01,02", "2006,01,02", "2006,01,03", "2006,01,03", "2006,01,03",
"2006,01,21", "2006,01,21", "2006,01,21", "2006,01,22", "2006,01,22",
"2006,01,22", "2006,01,22", "2006,01,23", "2006,01,23", "2006,01,23",
"2006,01,23", "2006,01,24", "2006,01,24", "2006,01,24", "2006,01,24",
"2006,01,25", "2004,02,09", "2004,02,09", "2004,02,09", "2004,02,10",
"2004,02,10", "2004,02,10", "2004,02,10", "2004,02,11", "2004,02,11",
"2004,02,11", "2004,02,11", "2004,02,12", "2004,02,12", "2004,02,12",
"2004,02,12", "2004,02,13", "2004,02,13", "2004,02,13", "2004,02,13",
"2004,02,14", "2004,02,14", "2004,02,14", "2004,02,14", "2004,02,15",
"2004,02,15", "2004,02,15", "2004,02,15", "2004,02,16", "2004,02,16",
"2004,02,16", "2004,02,16", "2004,02,17", "2004,02,17", "2004,02,17",
"2004,02,17", "2004,02,18", "2004,02,18", "2004,02,18", "2004,02,18",
"2004,02,19", "2004,02,19", "2004,02,19", "2004,02,19", "2004,02,20",
"2004,02,20", "2004,02,20", "2004,02,20", "2004,02,21", "2004,02,21",
"2004,02,21", "2004,02,21", "2004,02,22", "2004,02,22", "2004,02,22",
"2004,03,13", "2004,03,13", "2004,03,13", "2004,03,13", "2004,03,14",
"2004,03,14", "2004,03,14", "2004,03,14", "2004,03,15", "2004,03,15",
"2004,03,15", "2004,03,15", "2004,03,16", "2004,03,16"),
area = c("AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA",
"AA", "AA")), row.names = c(13038L, 13039L, 13040L, 13041L,
13042L, 13043L, 13044L, 13045L, 13046L, 13047L, 13048L, 13049L,
13050L, 13051L, 13052L, 13053L, 13124L, 13125L, 13126L, 13127L,
13128L, 13129L, 13130L, 13131L, 13132L, 13133L, 13134L, 13135L,
13136L, 13137L, 13138L, 13139L, 13619L, 13620L, 13621L, 13622L,
13623L, 13624L, 13625L, 13626L, 13627L, 13628L, 13629L, 13630L,
13631L, 13632L, 13633L, 13634L, 13635L, 13636L, 13637L, 13638L,
13639L, 13640L, 13641L, 13642L, 13643L, 13644L, 13645L, 13646L,
13647L, 13648L, 13649L, 13650L, 13651L, 13652L, 13653L, 13654L,
13655L, 13656L, 13657L, 13658L, 13659L, 13660L, 13661L, 13662L,
13663L, 13664L, 13665L, 13666L, 13667L, 13668L, 13669L, 13670L,
13671L, 13672L, 13750L, 13751L, 13752L, 13753L, 13754L, 13755L,
13756L, 13757L, 13758L, 13759L, 13760L, 13761L, 13762L, 13763L
), class = "data.frame")
Затем я применю функцию mcp()
Комментарии:
1. Это проблема кластеризации, поэтому я предлагаю, чтобы ее лучше задавали при перекрестной проверке . (FWIW, я думаю
dbscan
, может быть хорошим кандидатом для этого: для этого не требуется знать априори количество кластеров, как это делает KNN. Я попробовал ваши данные, но наличие только 12 точек данных в ваших образцах данных не работает должным образом.)2. @r2evans Спасибо за ответ. Теперь я обновил свои данные. Можете ли вы помочь с этим кластером?
Ответ №1:
Я подозреваю, что это проблема кластеризации. Одна из проблем, которая является общей для KNN (очень распространенного инструмента кластеризации), заключается в том, что обычно требуется знать априори количество кластеров. Это может быть достигнуто с помощью человека в цикле, но часто вы можете не захотеть полагаться на это.
Еще один хороший инструмент кластеризации dbscan
. Я продемонстрирую использование hdbscan
:
library(dbscan)
cl <- hdbscan(dat[,1:2], minPts = 5)
plot(lat ~ lon, data=dat, col = cl$cluster 1, pch = 16)
Возможно, вы предпочтете немного большую группировку
cl <- hdbscan(dat[,1:2], minPts = 10)
plot(lat ~ lon, data=dat, col = cl$cluster 1, pch = 16)
Это показывает иерархический DBSCAN, его также может быть разумно использовать dbscan
.
cl <- dbscan(dat[,1:2], eps=0.5) # play with eps
Комментарии:
1. замечательно! это именно то, что я хочу! Но, как я могу вставить эти группы в фрейм данных. Например: новый столбец с: «group1, group2 ….»? @r2evans
2.
dat$grp <- cl$cluster
даст вам столбец целых чисел на основе 0. Я бы не стал полагаться на порядок, поэтому0
он не обязательно будет существенно отличаться от1
; поэтому рассматривайте его как категориальное целое число, а не порядковый номер. Кроме того, я считаю, что есть стохастический компонентdbscan
, поэтому я не знаю, можете ли вы полагаться на определенную точку, всегда группирующуюся как одно и то же число. (Я не могу запустить его в данный момент, так что я могу ошибаться, но … имейте это в виду, если вы видите различную производительность.)3. Спасибо! @r2evans