#python #numpy #jupyter-notebook #nlp #jupyter
#python #numpy #jupyter-ноутбук #nlp #jupyter
Вопрос:
Получение ошибки при запуске модели BERT. До этого момента код выполняется успешно. Ошибка, которую я получаю, — AttributeError: объект ‘str’ не имеет атрибута ‘shape’. Предыдущим шагом перед кодом было создание пользовательского генератора данных. С помощью этого была создана модель. Для обеспечения контекста модель, которую я использовал, находится на веб-сайте https://keras.io/examples/nlp/semantic_similarity_with_bert / который я использовал для интерпретации своих собственных данных.
from ipywidgets import IntProgress
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
# Encoded token ids from BERT tokenizer.
input_ids = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="input_ids"
)
# Attention masks indicates to the model which tokens should be attended to.
attention_masks = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="attention_masks"
)
# Token type ids are binary masks identifying different sequences in the model.
token_type_ids = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="token_type_ids"
)
# Loading pretrained BERT model.
bert_model = transformers.TFBertModel.from_pretrained("bert-base-uncased")
# Freeze the BERT model to reuse the pretrained features without modifying them.
bert_model.trainable = False
sequence_output, pooled_output = bert_model(
input_ids, attention_mask=attention_masks, token_type_ids=token_type_ids
)
# Add trainable layers on top of frozen layers to adapt the pretrained features on the new data.
bi_lstm = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True)
)(sequence_output)
# Applying hybrid pooling approach to bi_lstm sequence output.
avg_pool = tf.keras.layers.GlobalAveragePooling1D()(bi_lstm)
max_pool = tf.keras.layers.GlobalMaxPooling1D()(bi_lstm)
concat = tf.keras.layers.concatenate([avg_pool, max_pool])
dropout = tf.keras.layers.Dropout(0.3)(concat)
output = tf.keras.layers.Dense(3, activation="softmax")(dropout)
model = tf.keras.models.Model(
inputs=[input_ids, attention_masks, token_type_ids], outputs=output
)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss="categorical_crossentropy",
metrics=["acc"],
)
print(f"Strategy: {strategy}")
model.summary()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-35-e6d50369bfa4> in <module>
25 )
26 # Add trainable layers on top of frozen layers to adapt the pretrained features on the new data.
---> 27 bi_lstm = tf.keras.layers.Bidirectional(
28 tf.keras.layers.LSTM(64, return_sequences=True)
29 )(sequence_output)
~anaconda3anacondaenvstensorflowlibsite-packagestensorflowpythonkeraslayerswrappers.py in __call__(self, inputs, initial_state, constants, **kwargs)
528
529 if initial_state is None and constants is None:
--> 530 return super(Bidirectional, self).__call__(inputs, **kwargs)
531
532 # Applies the same workaround as in `RNN.__call__`
~anaconda3anacondaenvstensorflowlibsite-packagestensorflowpythonkerasenginebase_layer.py in __call__(self, *args, **kwargs)
980 with ops.name_scope_v2(name_scope):
981 if not self.built:
--> 982 self._maybe_build(inputs)
983
984 with ops.enable_auto_cast_variables(self._compute_dtype_object):
~anaconda3anacondaenvstensorflowlibsite-packagestensorflowpythonkerasenginebase_layer.py in _maybe_build(self, inputs)
2615 # Check input assumptions set before layer building, e.g. input rank.
2616 if not self.built:
-> 2617 input_spec.assert_input_compatibility(
2618 self.input_spec, inputs, self.name)
2619 input_list = nest.flatten(inputs)
~anaconda3anacondaenvstensorflowlibsite-packagestensorflowpythonkerasengineinput_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
164 spec.min_ndim is not None or
165 spec.max_ndim is not None):
--> 166 if x.shape.ndims is None:
167 raise ValueError('Input ' str(input_index) ' of layer '
168 layer_name ' is incompatible with the layer: '
AttributeError: 'str' object has no attribute 'shape'
Ответ №1:
Входные данные в модель не должны быть строкой. Это должен быть массив numpy или тензор. Вы должны закодировать свою строку, преобразовав символы в массив numpy.
Из https://keras.io/examples/nlp/semantic_similarity_with_bert / существует также примеры кода для токенизации:
self.tokenizer = transformers.BertTokenizer.from_pretrained(
"bert-base-uncased", do_lower_case=True
)
# With BERT tokenizer's batch_encode_plus batch of both the sentences are
# encoded together and separated by [SEP] token.
encoded = self.tokenizer.batch_encode_plus(
sentence_pairs.tolist(),
add_special_tokens=True,
max_length=max_length,
return_attention_mask=True,
return_token_type_ids=True,
pad_to_max_length=True,
return_tensors="tf",
)
# Convert batch of encoded features to numpy array.
input_ids = np.array(encoded["input_ids"], dtype="int32")
attention_masks = np.array(encoded["attention_mask"], dtype="int32")
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")