#r
#r
Вопрос:
Мне интересно узнать об элегантном способе, позволяющем суммировать (или вычислять среднее значение) числовые значения списка. например
x <- list( a = matrix(c(1,2,3,4), nc=2), b = matrix(1, nc=2, nr=2))
и хотите получить
x[[1]] x[[2]]
или среднее:
(x[[1]] x[[2]])/2
Комментарии:
1. Какой вывод вы хотите для них? Я вижу два способа, которыми можно интерпретировать то, что вы просите, и они разные. Для двух вычислений exmaple укажите, какой ожидаемый результат, пожалуйста.
2. В этом примере это просто
with(x, a b)
, но это не масштабируется до большого количества элементов или элементов разных размеров или списков с нечисловыми элементами. Как сказал Гэвин: расскажите нам больше о том, что вы делаете.
Ответ №1:
Вы можете использовать Reduce
для последовательного применения двоичной функции к элементам в списке.
Reduce(" ",x)
[,1] [,2]
[1,] 2 4
[2,] 3 5
Reduce(" ",x)/length(x)
[,1] [,2]
[1,] 1.0 2.0
[2,] 1.5 2.5
Ответ №2:
Даже если Reduce()
это стандартный ответ на вопрос о суммировании списка матриц, и на это указывалось много раз, я собрал некоторые из наиболее известных способов достижения этой цели в следующем коде. Основная цель — показать, есть ли какой-либо выбор, который явно лучше других по скорости и «точности».
# load libraries
library(microbenchmark)
library(ggplot2)
# generate the data with ten matrices to sum
mat_list <- lapply(1:10, function(x) matrix(rnorm(100), nrow = 10, ncol = 10))
# larger and longer test set
mat_list_large <- lapply(1:1000, function(x) matrix(rnorm(100000), nrow = 1000, ncol = 100))
# function with reduce @james
f1 <- function(mat_list){
Reduce(` `, mat_list)
}
# function with apply @Jilber Urbina
f2 <- function(mat_list){
apply(simplify2array(mat_list), c(1:2), sum)
}
# function with do.call @Tyler Rinker
f3 <- function(mat_list){
x <- mat_list[[1]]
lapply(seq_along(mat_list)[-1], function(i){
x <<- do.call(" ", list(x, mat_list[[i]]))
})
return(x)
}
# function with loop modified from @Carl Witthoft
f4 <- function(mat_list){
out_mat <- mat_list[[1]]
for (i in 2:length(mat_list)) out_mat <- out_mat mat_list[[i]]
return(out_mat)
}
# test to see if they are all equal
all.equal(f1(mat_list), f2(mat_list), f3(mat_list), f4(mat_list), tolerance = 1.5e-8) # TRUE
# ps: the second method seems to differ slightly from the others
# run 100 times all the functions for having a statistic on their speed
mb <- microbenchmark("Reduce" = f1(mat_list),
"apply" = f2(mat_list),
"do.call" = f3(mat_list),
"loop" = f4(mat_list),
times = 100)
mb2 <- microbenchmark("Reduce" = f1(mat_list_large),
"apply" = f2(mat_list_large),
"do.call" = f3(mat_list_large),
"loop" = f4(mat_list_large),
times = 100)
# see output using a violin plot
autoplot(mb)
autoplot(mb2) # longer version for bigger datasets
Поэтому, вероятно, лучше использовать Reduce()
as для средней скорости и четкости кода.