#json #string #scala #apache-spark #spark-structured-streaming
#json #строка #scala #apache-spark #spark-structured-streaming
Вопрос:
Я пытаюсь прочитать поток json от брокера MQTT в Apache Spark со структурированной потоковой передачей, прочитать некоторые свойства входящего json и вывести их на консоль. Мой код выглядит так:
val spark = SparkSession
.builder()
.appName("BahirStructuredStreaming")
.master("local[*]")
.getOrCreate()
import spark.implicits._
val topic = "temp"
val brokerUrl = "tcp://localhost:1883"
val lines = spark.readStream
.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
.option("topic", topic).option("persistence", "memory")
.load(brokerUrl)
.toDF().withColumn("payload", $"payload".cast(StringType))
val jsonDF = lines.select(get_json_object($"payload", "$.eventDate").alias("eventDate"))
val query = jsonDF.writeStream
.format("console")
.start()
query.awaitTermination()
Однако, когда приходит json, я получаю следующие ошибки:
Exception in thread "main" org.apache.spark.sql.streaming.StreamingQueryException: Writing job aborted.
=== Streaming Query ===
Identifier: [id = 14d28475-d435-49be-a303-8e47e2f907e3, runId = b5bd28bb-b247-48a9-8a58-cb990edaf139]
Current Committed Offsets: {MQTTStreamSource[brokerUrl: tcp://localhost:1883, topic: temp clientId: paho7247541031496]: -1}
Current Available Offsets: {MQTTStreamSource[brokerUrl: tcp://localhost:1883, topic: temp clientId: paho7247541031496]: 0}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
Project [get_json_object(payload#22, $.id) AS eventDate#27]
- Project [id#10, topic#11, cast(payload#12 as string) AS payload#22, timestamp#13]
- StreamingExecutionRelation MQTTStreamSource[brokerUrl: tcp://localhost:1883, topic: temp clientId: paho7247541031496], [id#10, topic#11, payload#12, timestamp#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:300)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: org.apache.spark.SparkException: Writing job aborted.
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.doExecute(WriteToDataSourceV2Exec.scala:92)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:296)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3384)
at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2783)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:3365)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3365)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2783)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$15(MicroBatchExecution.scala:537)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$14(MicroBatchExecution.scala:533)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:349)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runBatch(MicroBatchExecution.scala:532)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:198)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:349)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
... 1 more
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 8, localhost, executor driver): java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.spark.unsafe.types.UTF8String
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String$(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getUTF8String(rows.scala:195)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$2(WriteToDataSourceV2Exec.scala:117)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:116)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.$anonfun$doExecute$2(WriteToDataSourceV2Exec.scala:67)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:405)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.doExecute(WriteToDataSourceV2Exec.scala:64)
... 34 more
Caused by: java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.spark.unsafe.types.UTF8String
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String$(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getUTF8String(rows.scala:195)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$2(WriteToDataSourceV2Exec.scala:117)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:116)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.$anonfun$doExecute$2(WriteToDataSourceV2Exec.scala:67)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:405)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Я отправляю записи JSON с помощью mosquitto broker, и они выглядят так:
mosquitto_pub -m '{"eventDate": "2020-11-11T15:17:00.000 0200"}' -t "temp"
Ответ №1:
Кажется, что все строки, поступающие от поставщика источника потока Bahir, вызывают эту ошибку. Например, следующий код также вызывает эту ошибку :
spark.readStream
.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
.option("topic", topic).option("persistence", "memory")
.load(brokerUrl)
.select("topic")
.writeStream
.format("console")
.start()
Похоже, что Spark не распознает строки, поступающие от Bahir, возможно, какая-то странная проблема с версией класса string. Я попробовал следующие действия, чтобы заставить код работать:
- установите версию java на 8
- обновите версию spark с 2.4.0 до 2.4.7
- установите версию scala на 2.11.12
- используйте функцию decode со всеми возможными комбинациями кодировок вместо
.cast(StringType)
преобразования столбца «полезная нагрузка» в строку - используйте функцию substring в столбце «полезная нагрузка», чтобы воссоздать совместимую строку.
Наконец, я получил рабочий код, воссоздав строку с помощью конструктора и набора данных:
val lines = spark.readStream
.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
.option("topic", topic).option("persistence", "memory")
.load(brokerUrl)
.select("payload")
.as[Array[Byte]]
.map(payload => new String(payload))
.toDF("payload")
Это решение довольно уродливое, но, по крайней мере, оно работает.
Я считаю, что в коде, приведенном в вопросе, нет ничего плохого, и я подозреваю, что ошибка на стороне Bahir или Spark не позволяет Spark обрабатывать строку из источника Bahir.
Комментарии:
1. Большое вам спасибо за все проведенные вами исследования! Я думаю, вы правы… Это проблема Бахира.