Регрессия с дополнительными переменными для оптимизации

#python #scikit-learn #scipy #linear-regression #mathematical-optimization

#python #scikit-learn #scipy #линейная регрессия #математическая оптимизация

Вопрос:

Мне даны данные, которые состоят из точек X и Y. (x_1,...x_n; y1,...y_n)

Я хочу подогнать X к Y, используя две базовые функции: max(x,mu_1) и min(x,mu_2)

Другими словами, я хочу оценить следующее уравнение:

 y_i = a_1*max(x_i,mu_1) a_2*min(x_i,mu_2)
  

Я хочу найти mu_1 и mu_2 так, чтобы приведенное выше соответствие было наилучшим из возможных. Я имею в виду такое mu_1 и mu_2 так, что когда я подгоняю Y к X, сумма квадратов остатка минимизируется.

Или я мог бы сказать, что мне нужно a_1 , a_2 , mu_1 , mu_2 чтобы сумма квадратов остатков для приведенной выше подгонки была сведена к минимуму.

Я попытался сделать следующее:

Я создал функцию из двух аргументов (mu_1 and mu_2) , которая возвращает качество соответствия Y X. И затем я попытался оптимизировать эту функцию с помощью scipy.optimize.minimize . Вот код:

 import numpy as np
from scipy.optimize import minimize
from sklearn.linear_model import LinearRegression

###Create X and Y
X = np.random.normal(10,1,size = 10000)
Y = np.random.normal(20,1,size = 10000)

###Create function that estimates quality of fit

def func(mu_1,mu_2):
   ### basis functions
   regressor_1 = np.maximum(X,mu_1).reshape(-1,1)
   regressor_2 = np.minimum(X,mu_2).reshape(-1,1)
   x_train = np.hstack((regressor_1,regressor_2))

   model = LinearRegression().fit(x_train,Y)

   ###I didnt find how to extract sum of squared residual, but I can get R 
   squared, so I thought that minimizing SSR is the same as maximizing R 
   squared and it is the same as minimizing -R^2

   objective = model.score(x_train,Y)
   return -1*objective

### Now I want to find such mu_1 and mu_2 that minimize "func"
minimum = minimize(func,0,0)
minimum.x
  

Это не работает. Я буду очень признателен за любую помощь.

Ответ №1:

Этот графический монтажник использует вашу функцию, похоже, он делает то, о чем вы просите.

 import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import warnings

xData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.0, 6.6, 7.7])
yData = numpy.array([1.1, 20.2, 30.3, 60.4, 50.0, 60.6, 70.7])


def func(x, a_1, a_2, mu_1, mu_2):
    retArray = []
    for x_i in x: # process data points individually
        val = a_1*max(x_i,mu_1)   a_2*min(x_i,mu_2)
        retArray.append(val)
    return retArray


# turn off the curve_fit() "covariance estimation" warning
warnings.filterwarnings("ignore")

# these are the same as the scipy defaults
initialParameters = numpy.array([1.0, 1.0, 1.0, 1.0])

# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)

modelPredictions = func(xData, *fittedParameters) 

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = func(xModel, *fittedParameters)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)