#python
#python
Вопрос:
У меня есть dicts
{'IMG_0003_1.tif': ['IMG_0004_1.tif', 'IMG_0005_1.tif'],
'IMG_0004_1.tif': ['IMG_0005_1.tif', 'IMG_0003_1.tif'],
'IMG_0005_1.tif': ['IMG_0004_1.tif', 'IMG_0006_1.tif'],
'IMG_0006_1.tif': ['IMG_0007_1.tif', 'IMG_0005_1.tif'],
'IMG_0007_1.tif': ['IMG_0006_1.tif', 'IMG_0008_1.tif'],
'IMG_0008_1.tif': ['IMG_0009_1.tif', 'IMG_0007_1.tif'],
'IMG_0009_1.tif': ['IMG_0008_1.tif', 'IMG_0010_1.tif'],
'IMG_0010_1.tif': ['IMG_0009_1.tif', 'IMG_0011_1.tif'],
'IMG_0011_1.tif': ['IMG_0012_1.tif', 'IMG_0013_1.tif'],
'IMG_0012_1.tif': ['IMG_0011_1.tif', 'IMG_0013_1.tif'],
'IMG_0013_1.tif': ['IMG_0014_1.tif', 'IMG_0012_1.tif'],
'IMG_0014_1.tif': ['IMG_0013_1.tif', 'IMG_0015_1.tif'],
'IMG_0015_1.tif': ['IMG_0014_1.tif', 'IMG_0016_1.tif'],
'IMG_0016_1.tif': ['IMG_0017_1.tif', 'IMG_0015_1.tif'],
'IMG_0017_1.tif': ['IMG_0019_1.tif', 'IMG_0018_1.tif'],
'IMG_0018_1.tif': ['IMG_0019_1.tif', 'IMG_0017_1.tif'],
'IMG_0019_1.tif': ['IMG_0018_1.tif', 'IMG_0017_1.tif'],
'IMG_0020_1.tif': ['IMG_0021_1.tif', 'IMG_0022_1.tif'],
'IMG_0021_1.tif': ['IMG_0020_1.tif', 'IMG_0022_1.tif'],
'IMG_0022_1.tif': ['IMG_0023_1.tif', 'IMG_0021_1.tif'],
'IMG_0023_1.tif': ['IMG_0022_1.tif', 'IMG_0021_1.tif']}
ключ —
значение изображения — список соседних изображений
Как создать график из этого dicts с помощью python networkx?
это будет использоваться для сшивания изображений
Ответ №1:
Используйте from_dict_of_lists:
import networkx as nx
d = {'IMG_0003_1.tif': ['IMG_0004_1.tif', 'IMG_0005_1.tif'],
'IMG_0004_1.tif': ['IMG_0005_1.tif', 'IMG_0003_1.tif'],
'IMG_0005_1.tif': ['IMG_0004_1.tif', 'IMG_0006_1.tif'],
'IMG_0006_1.tif': ['IMG_0007_1.tif', 'IMG_0005_1.tif'],
'IMG_0007_1.tif': ['IMG_0006_1.tif', 'IMG_0008_1.tif'],
'IMG_0008_1.tif': ['IMG_0009_1.tif', 'IMG_0007_1.tif'],
'IMG_0009_1.tif': ['IMG_0008_1.tif', 'IMG_0010_1.tif'],
'IMG_0010_1.tif': ['IMG_0009_1.tif', 'IMG_0011_1.tif'],
'IMG_0011_1.tif': ['IMG_0012_1.tif', 'IMG_0013_1.tif'],
'IMG_0012_1.tif': ['IMG_0011_1.tif', 'IMG_0013_1.tif'],
'IMG_0013_1.tif': ['IMG_0014_1.tif', 'IMG_0012_1.tif'],
'IMG_0014_1.tif': ['IMG_0013_1.tif', 'IMG_0015_1.tif'],
'IMG_0015_1.tif': ['IMG_0014_1.tif', 'IMG_0016_1.tif'],
'IMG_0016_1.tif': ['IMG_0017_1.tif', 'IMG_0015_1.tif'],
'IMG_0017_1.tif': ['IMG_0019_1.tif', 'IMG_0018_1.tif'],
'IMG_0018_1.tif': ['IMG_0019_1.tif', 'IMG_0017_1.tif'],
'IMG_0019_1.tif': ['IMG_0018_1.tif', 'IMG_0017_1.tif'],
'IMG_0020_1.tif': ['IMG_0021_1.tif', 'IMG_0022_1.tif'],
'IMG_0021_1.tif': ['IMG_0020_1.tif', 'IMG_0022_1.tif'],
'IMG_0022_1.tif': ['IMG_0023_1.tif', 'IMG_0021_1.tif'],
'IMG_0023_1.tif': ['IMG_0022_1.tif', 'IMG_0021_1.tif']}
G = nx.from_dict_of_lists(d)
for edge in G.edges:
print(edge)
Вывод (частичный)
('IMG_0003_1.tif', 'IMG_0004_1.tif')
('IMG_0003_1.tif', 'IMG_0005_1.tif')
('IMG_0004_1.tif', 'IMG_0005_1.tif')
('IMG_0005_1.tif', 'IMG_0006_1.tif')
('IMG_0006_1.tif', 'IMG_0007_1.tif')
('IMG_0007_1.tif', 'IMG_0008_1.tif')
('IMG_0008_1.tif', 'IMG_0009_1.tif')
('IMG_0009_1.tif', 'IMG_0010_1.tif')
('IMG_0010_1.tif', 'IMG_0011_1.tif')
('IMG_0011_1.tif', 'IMG_0012_1.tif')
('IMG_0011_1.tif', 'IMG_0013_1.tif')
Комментарии:
1. Хорошо! Спасибо!