Испорчено освещение OpenGL 3.1, с использованием фонг-затенения

#c #opengl #glsl #freeglut #glu

#c #opengl #glsl #freeglut #glu

Вопрос:

После многих мучительных часов попыток выяснить, почему мое освещение испорчено, я все еще в недоумении.

Нормали OpenGL верны (отбраковка задней поверхности не приводит к исчезновению ни одного из моих треугольников)

Я вычисляю свои нормали для интерполяции для освещения, все треугольники на одних и тех же гранях также имеют одинаковые нормали.

Если у кого-нибудь есть какие-либо мысли, это было бы оценено.

Я определенно новичок в OpenGL, так что это немного очевидно в моем коде. неправильное освещение

вот мои шейдеры:

  • вершинный шейдер

     #version 330 core
    
    layout(location = 0) in vec3 Position;
    layout(location = 1) in vec3 vertexColor;
    in   vec3 vNormal;
    
    out vec3 fragmentColor; // Output data ; will be interpolated for each fragment.
    uniform mat4 MVP;
    uniform mat4 transformMatrix;
    uniform vec4 LightPosition;
    
    // output values that will be interpretated per-fragment
    out  vec3 fN;
    out  vec3 fE;
    out  vec3 fL;
    
    void main()
    {
    
    
        fN = vNormal;
        fE = Position.xyz;
        fL = LightPosition.xyz;
    
        if( LightPosition.w != 0.0 ) {
            fL = LightPosition.xyz - Position.xyz;
        }
    
    
    
        // Output position of the vertex, in clip space : MVP * position
        vec4 v = vec4(Position,1); // Transform in homoneneous 4D vector
        gl_Position = MVP * v;
        //gl_Position = MVP * v;
    
    
    
        // The color of each vertex will be interpolated
        // to produce the color of each fragment
        //fragmentColor = vertexColor; // take out at some point
    }
      
  • и fragmentShader, используя фонг-затенение

     #version 330
    //out vec3 color;
    
    // per-fragment interpolated values from the vertex shader
    in  vec3 fN;
    in  vec3 fL;
    in  vec3 fE;
    
    out vec4 fColor;
    
    uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
    uniform mat4 ModelView;
    uniform vec4 LightPosition;
    uniform float Shininess;
    
    in vec3 fragmentColor; // Interpolated values from the vertex shaders
    
    void main()
    {
    
        // Normalize the input lighting vectors
        vec3 N = normalize(fN);
        vec3 E = normalize(fE);
        vec3 L = normalize(fL);
    
        vec3 H = normalize( L   E );
    
        vec4 ambient = AmbientProduct;
    
        float Kd = max(dot(L, N), 0.0);
        vec4 diffuse = Kd*DiffuseProduct;
    
        float Ks = pow(max(dot(N, H), 0.0), Shininess);
        vec4 specular = Ks*SpecularProduct;
    
        // discard the specular highlight if the light's behind the vertex
        if( dot(L, N) < 0.0 ) {
        specular = vec4(0.0, 0.0, 0.0, 1.0);
        }
    
        fColor = ambient   diffuse   specular;
        fColor.a = 1.0;
    
        //color = vec3(1,0,0);
    
        // Output color = color specified in the vertex shader,
        // interpolated between all 3 surrounding vertices
        //color = fragmentColor;
    }
    
    
    void setMatrices()
    {
        GLfloat FoV = 45; // the zoom of the camera 
    
        glm::vec3 cameraPosition(4,3,3), // the position of your camera, in world space // change to see what happends
        cameraTarget(0,0,0),         // where you want to look at, in world space
        upVector(0,-1,0);
    
        // Projection matrix : 45° Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
        glm::mat4 Projection = glm::perspective(FoV, 3.0f / 3.0f, 0.001f, 100.0f); // ratio needs to change here when the screen size/ratio changes
    
        // Camera matrix
        glm::mat4 View = glm::lookAt(
            cameraPosition, // Camera is at (4,3,3), in World Space
            cameraTarget, // and looks at the origin
            upVector  // Head is up (set to 0,-1,0 to look upside-down)
        );
    
        // Model matrix : an identity matrix (model will be at the origin)
        glm::mat4 Model = glm::mat4(1.0f);  // Changes for each model !
    
        // Our ModelViewProjection : multiplication of our 3 matrices
        glm::mat4 MVP = Projection * View * Model * transformMatrix; //matrix multiplication is the other way around
    
    
        // Get a handle for our "MVP" uniform.
        // Only at initialisation time.
        GLuint MatrixID = glGetUniformLocation(programID, "MVP");
        // Send our transformation to the currently bound shader,
        // in the "MVP" uniform
        // For each model you render, since the MVP will be different (at least the M part)
        glUniformMatrix4fv(MatrixID, 1, GL_FALSE, amp;MVP[0][0]);
    
        RotationID = glGetUniformLocation(programID,"transformMatrix");
    
        //lighting
        cubeNormal = glGetAttribLocation( programID, "vNormal" );
    
    
    }
    void setBuffers()
    {
        // Get a vertex array object
        GLuint VAO;
        glGenVertexArrays(1, amp;VAO);
        glBindVertexArray(VAO);
    
        glUseProgram(programID);
    
        // cube buffer objects
        glGenBuffers(1, amp;CubeVertexbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, CubeVertexbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(CubeBufferData), CubeBufferData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
        // cube normal objects
        glGenBuffers(1, amp;CubeNormalbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, CubeNormalbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(CubeNormalBufferData), CubeNormalBufferData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
    
    
    
        //octahedron buffer objects
        glGenBuffers(1, amp;OctaVertexbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, OctaVertexbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(octahedronBufData), octahedronBufData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
        //tetrahedron buffer objects
        glGenBuffers(1, amp;TetraVertexbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, TetraVertexbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(tetrahedronBufData), tetrahedronBufData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
        //dodecahedron buffer objects
        glGenBuffers(1, amp;DodecaVertexbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, DodecaVertexbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(dodecahedronBufData), dodecahedronBufData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
        //icosahedron buffer objects
        glGenBuffers(1, amp;icosaVertexbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, icosaVertexbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(icosahedronBufData), icosahedronBufData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
        //sphere buffer objects
        glGenBuffers(1, amp;sphereVertexbuffer); // Generate 1 buffer, put the resulting identifier in vertexbuffer
        glBindBuffer(GL_ARRAY_BUFFER, sphereVertexbuffer); // The following commands will talk about our 'vertexbuffer' buffer
        glBufferData(GL_ARRAY_BUFFER, sizeof(sphereBufData), sphereBufData, GL_STATIC_DRAW); // Give our vertices to OpenGL.
    
    
        glGenBuffers(1, amp;colorbuffer);
        glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
        glBufferData(GL_ARRAY_BUFFER, sizeof(g_color_buffer_data), g_color_buffer_data, GL_STATIC_DRAW);
    
        // lighting stuff
    
    
    
        // Initialize shader lighting parameters
        point4 light_position= { 0.0, 20.0, -10.0, 0.0 };
        color4 light_ambient ={ 0.2, 0.2, 0.2, 1.0 };
        color4 light_diffuse ={ 1.0, 1.0, 1.0, 1.0 };
        color4 light_specular ={ 1.0, 1.0, 1.0, 1.0 };
    
        color4 material_ambient ={ 1.0, 0.0, 1.0, 1.0 };
        color4 material_diffuse ={ 1.0, 0.8, 0.0, 1.0 };
        color4 material_specular ={ 1.0, 0.8, 0.0, 1.0 };
        float  material_shininess = 20.0;
    
        color4 ambient_product;
        color4 diffuse_product;
        color4 specular_product;
        int i;
        for (i = 0; i < 3; i  ) {
            ambient_product[i] = light_ambient[i] * material_ambient[i];
            diffuse_product[i] = light_diffuse[i] * material_diffuse[i];
            specular_product[i] = light_specular[i] * material_specular[i];
        }
        //printColor("diffuse", diffuse_product);
        //printColor("specular", specular_product);
    
        glUniform4fv( glGetUniformLocation(programID, "AmbientProduct"),
          1, ambient_product );
        glUniform4fv( glGetUniformLocation(programID, "DiffuseProduct"),
          1, diffuse_product );
        glUniform4fv( glGetUniformLocation(programID, "SpecularProduct"),
          1, specular_product );
    
        glUniform4fv( glGetUniformLocation(programID, "LightPosition"),
          1, light_position );
    
        glUniform1f( glGetUniformLocation(programID, "Shininess"),
         material_shininess );
    
    }
      

and some more….

 void display()
{

    setMatrices(); // initilize Matrices
    // Use our shader
    //glUseProgram(programID);

    glClearColor(0.0f, 0.0f, 0.3f, 0.0f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 


    // 2nd attribute buffer : colors
    glEnableVertexAttribArray(1);
    glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
    glVertexAttribPointer(
        1,                                // attribute. No particular reason for 1, but must match the layout in the shader.
        3,                                // size
        GL_FLOAT,                         // type
        GL_FALSE,                         // normalized?
        0,                                // stride
        (void*)0                          // array buffer offset
    );

    glEnableVertexAttribArray(0); // 1rst attribute buffer : vertices   

    // enum platosShapes{tet, cube, octah, dodec, icos};
    switch(shapeInUse)
    {
        case tet:
            {

                glBindBuffer(GL_ARRAY_BUFFER, TetraVertexbuffer);
                glVertexAttribPointer(
                    0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
                    3,                  // size
                    GL_FLOAT,           // type
                    GL_FALSE,           // normalized?
                    0,                  // stride
                    (void*)0            // array buffer offset
                );

                glDrawArrays(GL_TRIANGLES, 0, 4*3); // Starting from vertex 0; 3 vertices total -> 1 triangle // need to know amount of vertices here // and change to triangle strips accordingly
            }
            break;
        case cube:
            {

                //GLuint cubeNormal = glGetAttribLocation( programID, "vNormal" ); 
                glEnableVertexAttribArray( cubeNormal );
                glVertexAttribPointer( cubeNormal, 3, GL_FLOAT, GL_FALSE, 0,
                (const GLvoid *) (sizeof(CubeNormalBufferData)) );
                //glDisableVertexAttribArray( cubeNormal );



                glBindBuffer(GL_ARRAY_BUFFER, CubeVertexbuffer);
                glVertexAttribPointer(
                    0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
                    3,                  // size
                    GL_FLOAT,           // type
                    GL_FALSE,           // normalized?
                    0,                  // stride
                    (void*)0            // array buffer offset
                );

                glDrawArrays(GL_TRIANGLES, 0, 12*3); // Starting from vertex 0; 3 vertices total -> 1 triangle // need to know amount of vertices here // and change to triangle strips accordingly
            }
            break;
        case octah:
            {
                glBindBuffer(GL_ARRAY_BUFFER, OctaVertexbuffer);
                glVertexAttribPointer(
                    0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
                    3,                  // size
                    GL_FLOAT,           // type
                    GL_FALSE,           // normalized?
                    0,                  // stride
                    (void*)0            // array buffer offset
                );

                glDrawArrays(GL_TRIANGLES, 0, 8*3); // Starting from vertex 0; 3 vertices total -> 1 triangle // need to know amount of vertices here // and change to triangle strips accordingly
            }
            break;
        case dodec:
            {
                glBindBuffer(GL_ARRAY_BUFFER, DodecaVertexbuffer);
                glVertexAttribPointer(
                    0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
                    3,                  // size
                    GL_FLOAT,           // type
                    GL_FALSE,           // normalized?
                    0,                  // stride
                    (void*)0            // array buffer offset
                );

                glDrawArrays(GL_TRIANGLE_FAN, 0, 5 * 6); // Starting from vertex 0; 3 vertices total -> 1 triangle // need to know amount of vertices here // and change to triangle strips accordingly
                glDrawArrays(GL_TRIANGLE_FAN, (5 * 6)   1, 30);
                //glutSolidDodecahedron();
                //glDrawArrays(GL_TRIANGLE_STRIP,0,5*12);
            }
            break;
        case icos:
            {
                glBindBuffer(GL_ARRAY_BUFFER, icosaVertexbuffer);
                glVertexAttribPointer(
                    0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
                    3,                  // size
                    GL_FLOAT,           // type
                    GL_FALSE,           // normalized?
                    0,                  // stride
                    (void*)0            // array buffer offset
                );

                glDrawArrays(GL_TRIANGLES, 0, 3*20); // Starting from vertex 0; 3 vertices total -> 1 triangle // need to know amount of vertices here // and change to triangle strips accordingly
            }
            break;
        case sphere:
            {
                glBindBuffer(GL_ARRAY_BUFFER, sphereVertexbuffer);
                glVertexAttribPointer(
                    0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
                    3,                  // size
                    GL_FLOAT,           // type
                    GL_FALSE,           // normalized?
                    0,                  // stride
                    (void*)0            // array buffer offset
                );
                //glDrawElements(GL_TRIANGLES, cnt2, GL_UNSIGNED_INT, 0)
                glDrawArrays(GL_TRIANGLE_FAN, 0, 100);
            }
    }

    glDisableVertexAttribArray(0);
    glFlush();

}
  

и еще кое-что……..

 void calculateNormals(GLfloat bufData[], GLfloat normBufData[], int size) // probalby works
{
    int count = 0;
    GLfloat temp[9];

    for(int i = 0; i < size; i  )
    {

        temp[count] = bufData[i];
        count  ;

        if((i 1) % 9 == 0)
        {
            count = 0;

            //for(int i = 0; i < 9; i  )
            //{
            //  cout << temp[i] << "!,";
            //  if((i   1) % 3 == 0)
            //      cout << "n";
            //}

            calculateCross(temp, normBufData);
        }
    }

    printNormals(normBufData, size);
}
void calculateCross(GLfloat bufData[], GLfloat normBufData[]) // probably works
{
    static int counter = 0; // need to reset in bettween new buffers

    glm::vec3 C1;
    glm::vec3 C2;
    glm::vec3 normal;

    //cout << bufData[0] << "," << bufData[1] << "," << bufData[2] << " buf 1 n"; 
    //cout << bufData[3] << "," << bufData[4] << "," << bufData[5] << " buf 2 n"; 
    //cout << bufData[6] << "," << bufData[7] << "," << bufData[8] << " buf 3 nn"; 



    //C1.x = bufData[3] - bufData[0];
    //C1.y = bufData[4] - bufData[1];
    //C1.z = bufData[5] - bufData[2];

    //C2.x = bufData[6] - bufData[0];
    //C2.y = bufData[7] - bufData[1];
    //C2.z = bufData[8] - bufData[2];

    C1.x = bufData[0] - bufData[3];
    C1.y = bufData[1] - bufData[4];
    C1.z = bufData[2] - bufData[5];

    C2.x = bufData[0] - bufData[6];
    C2.y = bufData[1] - bufData[7];
    C2.z = bufData[2] - bufData[8];

    //C2.x = bufData[6] - bufData[0];
    //C2.y = bufData[7] - bufData[1];
    //C2.z = bufData[8] - bufData[2];

    //cout << C1.x << " 1x n";
    //cout << C1.y << " 1y n";
    //cout << C1.z << " 1z n";

    //cout << C2.x << " 2x n";
    //cout << C2.y << " 2y n";
    //cout << C2.z << " 2z n";

    normal = glm::cross(C1, C2);

    //cout << "nNORMAL : " << normal.x << "," << normal.y << "," << normal.z << " counter = " << counter << "n";

    for(int j = 0; j < 3; j  )
    {
        for(int i = 0; i < 3; i  )
        {
            normBufData[counter] = normal.x;
            normBufData[counter   1] = normal.y;
            normBufData[counter   2] = normal.z;

        }
        counter =3;
    }






}
  

и main…..

 int main(int argc, char **argv)
{
    glutInit(amp;argc, argv);
    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
    glutInitWindowSize(700, 700);    // Window Size

    glutCreateWindow("Michael - Lab 3");
    glutDisplayFunc(display);
    glutTimerFunc(10, timeFucn, 10);
    glutIdleFunc(Idle);
    glutKeyboardFunc(keyboard);
    glewExperimental = GL_TRUE;
    glewInit();

    glEnable(GL_CULL_FACE);
    glEnable(GL_DEPTH_TEST); // Enable depth test
    glDepthFunc(GL_LESS); // Accept fragment if it closer to the camera than the former one

    GenerateSphere(); // this function generates points for the sphere

    programID = LoadShader( "VertexShader.glsl", "FragmentShader.glsl" ); // Create and compile our GLSL program from the shaders

    setBuffers(); // initilize buffers

    calculateNormals(CubeBufferData,CubeNormalBufferData,108); // calculate norms
    //printNormals(CubeNormalBufferData);

    glutMainLoop();
}
  

Комментарии:

1. Я предполагаю, что вы рисуете свою половину или свои треугольники задом наперед.

2. Кстати, отбраковка обратной стороны не имеет ничего общего с нормалями.

3. Вы имеете в виду порядок прорисовываемых точек или лиц в обратном направлении? Потому что, когда я включаю отбраковку задней грани, все мои треугольники все еще там.

4. Я просто имел в виду нормаль треугольника, которую OpenGL использует при определении того, следует ли рисовать многоугольник при включенной отбраковке

5. @MikeCasa: Отбраковка граней основана не на нормалях, а на намотке. Вершины, нарисованные на экране по часовой стрелке, считаются фоновой поверхностью, фронтальной поверхностью против часовой стрелки. Таким образом, ваши нормали могут быть неправильными; вы не можете проверить это с помощью отбраковки лиц.

Ответ №1:

Вы забыли связать объект буфера с нормалями перед вызовом glVertexAttribPointer( cubeNormal, 3,....); . Поэтому фактические данные для нормалей берутся из цветового буфера, что приводит к самому странному результату оценки Фонга.

Кстати, хороший стиль кодирования 🙂

Комментарии:

1. круто, спасибо. Как ни странно, я могу запустить новый рабочий код только на видеокарте nvidia. Также имеет ли смысл переместить содержимое glVertexAttribPointer в setBuffers(), а затем просто вызвать glBindBuffer(GL_ARRAY_BUFFER, CubeNormalbuffer); и glBindBuffer(GL_ARRAY_BUFFER, CubeVertexbuffer); в display()?

2. 1. Он также должен работать на ATI. В порядке ли журналы информации о шейдерах? 2. Нет, glVertexAttribPointer должен вызываться при каждом вызове draw сразу после соответствующей привязки буфера (GL_ARRAY_BUFFER).

3. оказывается, я делал совсем немного неправильно, в зависимости от настроек по умолчанию любой видеокарты, результат изменился. Но это имело значение только потому, что все, что я делал неправильно.

Ответ №2:

Затенения Фонга и Гуро неприменимы к объектам со всеми плоскими поверхностями, например, к кубу.