не удается применить sklearn.compose.ColumnTransformer только к одному столбцу фрейма данных pandas

#scikit-learn #pipeline #sklearn-pandas

#scikit-learn #конвейер #sklearn-pandas

Вопрос:

Я определил пользовательский tansformer, который принимает фрейм данных pandas, применяет функцию только к одному столбцу и оставляет все остальные столбцы нетронутыми. Трансформатор работает нормально во время тестирования, но не тогда, когда я включаю его как часть конвейера.

Вот трансформатор:

 import re
from sklearn.base import BaseEstimator, TransformerMixin

class SynopsisCleaner(BaseEstimator, TransformerMixin):
    def __init__(self):
        return None
    
    def fit(self, X, y=None, **fit_params):
        # nothing to learn from data.
        return self
    
    def clean_text(self, text):
        text = text.lower()
        text = re.sub(r'@[a-zA-Z0-9_] ', '', text)   
        text = re.sub(r'https?://[A-Za-z0-9./] ', '', text)   
        text = re.sub(r'www.[^ ] ', '', text)  
        text = re.sub(r'[a-zA-Z0-9]*www[a-zA-Z0-9]*com[a-zA-Z0-9]*', '', text)  
        text = re.sub(r'[^a-zA-Z]', ' ', text)   
        text = [token for token in text.split() if len(token) > 2]
        text = ' '.join(text)
        return text
    
    def transform(self, X, y=None, **fit_params):
        for i in range(X.shape[0]):
            X[i] = self.clean_text(X[i])
        return X
  

Когда я тестирую его вручную таким образом, он работает так, как ожидалось.

 train_synopsis = SynopsisCleaner().transform(train_data['Synopsis'])
  

Но, когда я включаю его как часть конвейера sklearn:

 from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline

# part 1: defining a column transformer that learns on only one column and transforms it
synopsis_clean_col_tran = ColumnTransformer(transformers=[('synopsis_clean_col_tran', SynopsisCleaner(), ['Synopsis'])],
                                            # set remainder to passthrough to pass along all the un-specified columns untouched to the next steps
                                            remainder='passthrough')

# make a pipeline now with all the steps
pipe_1 = Pipeline(steps=[('synopsis_cleaning', synopsis_clean_col_tran)])
pipe_1.fit(train_data)
  

Я получаю KeyError, как показано ниже:

 ---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   2890             try:
-> 2891                 return self._engine.get_loc(casted_key)
   2892             except KeyError as err:

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 0

The above exception was the direct cause of the following exception:

KeyError                                  Traceback (most recent call last)
16 frames
<ipython-input-10-3396fa5d6092> in <module>()
      6 # make a pipeline now with all the steps
      7 pipe_1 = Pipeline(steps=[('synopsis_cleaning', synopsis_clean_col_tran)])
----> 8 pipe_1.fit(train_data)

/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
    352                                  self._log_message(len(self.steps) - 1)):
    353             if self._final_estimator != 'passthrough':
--> 354                 self._final_estimator.fit(Xt, y, **fit_params)
    355         return self
    356 

/usr/local/lib/python3.6/dist-packages/sklearn/compose/_column_transformer.py in fit(self, X, y)
    482         # we use fit_transform to make sure to set sparse_output_ (for which we
    483         # need the transformed data) to have consistent output type in predict
--> 484         self.fit_transform(X, y=y)
    485         return self
    486 

/usr/local/lib/python3.6/dist-packages/sklearn/compose/_column_transformer.py in fit_transform(self, X, y)
    516         self._validate_remainder(X)
    517 
--> 518         result = self._fit_transform(X, y, _fit_transform_one)
    519 
    520         if not result:

/usr/local/lib/python3.6/dist-packages/sklearn/compose/_column_transformer.py in _fit_transform(self, X, y, func, fitted)
    455                     message=self._log_message(name, idx, len(transformers)))
    456                 for idx, (name, trans, column, weight) in enumerate(
--> 457                         self._iter(fitted=fitted, replace_strings=True), 1))
    458         except ValueError as e:
    459             if "Expected 2D array, got 1D array instead" in str(e):

/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in __call__(self, iterable)
   1027             # remaining jobs.
   1028             self._iterating = False
-> 1029             if self.dispatch_one_batch(iterator):
   1030                 self._iterating = self._original_iterator is not None
   1031 

/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in dispatch_one_batch(self, iterator)
    845                 return False
    846             else:
--> 847                 self._dispatch(tasks)
    848                 return True
    849 

/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in _dispatch(self, batch)
    763         with self._lock:
    764             job_idx = len(self._jobs)
--> 765             job = self._backend.apply_async(batch, callback=cb)
    766             # A job can complete so quickly than its callback is
    767             # called before we get here, causing self._jobs to

/usr/local/lib/python3.6/dist-packages/joblib/_parallel_backends.py in apply_async(self, func, callback)
    206     def apply_async(self, func, callback=None):
    207         """Schedule a func to be run"""
--> 208         result = ImmediateResult(func)
    209         if callback:
    210             callback(result)

/usr/local/lib/python3.6/dist-packages/joblib/_parallel_backends.py in __init__(self, batch)
    570         # Don't delay the application, to avoid keeping the input
    571         # arguments in memory
--> 572         self.results = batch()
    573 
    574     def get(self):

/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in __call__(self)
    251         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    252             return [func(*args, **kwargs)
--> 253                     for func, args, kwargs in self.items]
    254 
    255     def __reduce__(self):

/usr/local/lib/python3.6/dist-packages/joblib/parallel.py in <listcomp>(.0)
    251         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    252             return [func(*args, **kwargs)
--> 253                     for func, args, kwargs in self.items]
    254 
    255     def __reduce__(self):

/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py in _fit_transform_one(transformer, X, y, weight, message_clsname, message, **fit_params)
    726     with _print_elapsed_time(message_clsname, message):
    727         if hasattr(transformer, 'fit_transform'):
--> 728             res = transformer.fit_transform(X, y, **fit_params)
    729         else:
    730             res = transformer.fit(X, y, **fit_params).transform(X)

/usr/local/lib/python3.6/dist-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
    569         if y is None:
    570             # fit method of arity 1 (unsupervised transformation)
--> 571             return self.fit(X, **fit_params).transform(X)
    572         else:
    573             # fit method of arity 2 (supervised transformation)

<ipython-input-6-004ee595d544> in transform(self, X, y, **fit_params)
     20     def transform(self, X, y=None, **fit_params):
     21         for i in range(X.shape[0]):
---> 22             X[i] = self.clean_text(X[i])
     23         return X

/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py in __getitem__(self, key)
   2900             if self.columns.nlevels > 1:
   2901                 return self._getitem_multilevel(key)
-> 2902             indexer = self.columns.get_loc(key)
   2903             if is_integer(indexer):
   2904                 indexer = [indexer]

/usr/local/lib/python3.6/dist-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   2891                 return self._engine.get_loc(casted_key)
   2892             except KeyError as err:
-> 2893                 raise KeyError(key) from err
   2894 
   2895         if tolerance is not None:

KeyError: 0
  

Что я здесь делаю не так?

РЕДАКТИРОВАТЬ 1: без скобок и имени столбца, указанного как строка, это ошибка, которую я вижу:

 ---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-11-bdd42b09e2af> in <module>()
      6 # make a pipeline now with all the steps
      7 pipe_1 = Pipeline(steps=[('synopsis_cleaning', synopsis_clean_col_tran)])
----> 8 pipe_1.fit(train_data)

3 frames
/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
    352                                  self._log_message(len(self.steps) - 1)):
    353             if self._final_estimator != 'passthrough':
--> 354                 self._final_estimator.fit(Xt, y, **fit_params)
    355         return self
    356 

/usr/local/lib/python3.6/dist-packages/sklearn/compose/_column_transformer.py in fit(self, X, y)
    482         # we use fit_transform to make sure to set sparse_output_ (for which we
    483         # need the transformed data) to have consistent output type in predict
--> 484         self.fit_transform(X, y=y)
    485         return self
    486 

/usr/local/lib/python3.6/dist-packages/sklearn/compose/_column_transformer.py in fit_transform(self, X, y)
    536 
    537         self._update_fitted_transformers(transformers)
--> 538         self._validate_output(Xs)
    539 
    540         return self._hstack(list(Xs))

/usr/local/lib/python3.6/dist-packages/sklearn/compose/_column_transformer.py in _validate_output(self, result)
    400                 raise ValueError(
    401                     "The output of the '{0}' transformer should be 2D (scipy "
--> 402                     "matrix, array, or pandas DataFrame).".format(name))
    403 
    404     def _validate_features(self, n_features, feature_names):

ValueError: The output of the 'synopsis_clean_col_tran' transformer should be 2D (scipy matrix, array, or pandas DataFrame).
  

Комментарии:

1. Пожалуйста, не забудьте предоставить полную обратную трассировку ошибок; что «16 кадров» скрывают ценную информацию, в частности, где на самом деле происходит ошибка ключа.

2. @BenReiniger, я добавил полное сообщение об ошибке.

Ответ №1:

В вашем ручном тестировании вы передаете серию train_data['Synopsis'] , но преобразователь столбцов передает кадр train_data[['Synopsis']] . (Итак, чтобы прояснить ошибку: X[i] пытается получить столбец с именем 0, которого на самом деле не существует.) Вы должны быть в состоянии исправить это так же легко, как убрать скобки 'Synopsis' в спецификации столбца трансформатора. Из документов:

… Следует использовать скалярную строку или int, где transformer ожидает, что X будет 1d-подобным массивом (векторным), в противном случае преобразователю будет передан 2d-массив. …

То есть,

 synopsis_clean_col_tran = ColumnTransformer(
    transformers=[('synopsis_clean_col_tran', SynopsisCleaner(), 'Synopsis')],
    # set remainder to passthrough to pass along all the un-specified columns untouched to the next steps
    remainder='passthrough',
)
  

Ах, но потом ColumnTransformer жалуется, что выходной сигнал вашего трансформатора одномерный; это прискорбно. Я думаю, что самое простое — переключить вас transform на ожидание ввода и вывода как 2D. Если вам когда-либо понадобятся только фреймы данных в качестве входных данных (никаких других преобразователей sklearn, преобразующих в массивы numpy), то это может быть относительно просто, используя a FunctionTransformer вместо вашего пользовательского класса.

 def clean_text_frame(X):
    return X.applymap(clean_text)  # the function "clean_text" currently in your class.

synopsis_clean_col_tran = ColumnTransformer(
    transformers=[('synopsis_clean_col_tran', FunctionTransformer(clean_text_frame), ['Synopsis'])],
    # set remainder to passthrough to pass along all the un-specified columns untouched to the next steps
    remainder='passthrough',
)
  

Комментарии:

1. Пожалуйста, проверьте мою недавнюю правку, которая показывает ошибку, которую я получил, когда внес изменения, предложенные вами в ответе.

2. это исправило ошибку. из того, что я прочитал в stackoverflow, было бы неплохо принять объекты, наследуемые от BaseEstimator и TransformerMixin для таких вещей, как GridSearchCV работать должным образом и не иметь неожиданных ошибок.

3. Итак, есть ли какой-либо способ сделать это без FunctionTransformer и с классом, наследующим от BaseEstimator и TransformerMixin ?

4. Эти рекомендации предназначены для пользовательских классов; FunctionTransformer предоставляется sklearn и будет отлично работать с поиском по сетке. Но, конечно, вы можете переписать свой transform для вывода 2D-массива. Возможно, проще всего также ожидать ввода 2D и использовать applymap его для всего.