cuSOLVER- версия устройства cusolverSpScsrlsvqr намного медленнее, чем версия хоста

#c #cuda #sparse-matrix #linear-algebra #cusolver

#c #cuda #разреженная матрица #линейная алгебра #cusolver

Вопрос:

У меня есть разреженная 3-диагональная матрица NxN A , построенная по некоторому правилу, и я хочу решить систему Ax=b . Для этого я использую cusolverSpScsrlsvqr() модуль from cuSolverSP. Можно ли иметь версию устройства во много раз медленнее, чем cusolverSpScsrlsvqrHost() для большого N? Например. для N = 2 ^ 14 время составляет 174,1 мс для устройства и 3,5 мс для хоста. Я на RTX 2060.

Код:

 #include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <cusolverSp.h>
#include <cusparse_v2.h>

#include <stdio.h>
#include <iostream>
#include <iomanip>
#include <chrono> 


using namespace std;

void checkCudaCusolverStatus(cusolverStatus_t status, char const* operation) {
    char const *str = "UNKNOWN STATUS";
    switch (status) {
    case CUSOLVER_STATUS_SUCCESS:
        str = "CUSOLVER_STATUS_SUCCESS";
        break;
    case CUSOLVER_STATUS_NOT_INITIALIZED:
        str = "CUSOLVER_STATUS_NOT_INITIALIZED";
        break;
    case CUSOLVER_STATUS_ALLOC_FAILED:
        str = "CUSOLVER_STATUS_ALLOC_FAILED";
        break;
    case CUSOLVER_STATUS_INVALID_VALUE:
        str = "CUSOLVER_STATUS_INVALID_VALUE";
        break;
    case CUSOLVER_STATUS_ARCH_MISMATCH:
        str = "CUSOLVER_STATUS_ARCH_MISMATCH";
        break;
    case CUSOLVER_STATUS_MAPPING_ERROR:
        str = "CUSOLVER_STATUS_MAPPING_ERROR";
        break;
    case CUSOLVER_STATUS_EXECUTION_FAILED:
        str = "CUSOLVER_STATUS_EXECUTION_FAILED";
        break;
    case CUSOLVER_STATUS_INTERNAL_ERROR:
        str = "CUSOLVER_STATUS_INTERNAL_ERROR";
        break;
    case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
        str = "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED";
        break;
    case CUSOLVER_STATUS_ZERO_PIVOT:
        str = "CUSOLVER_STATUS_ZERO_PIVOT";
        break;
    }
    cout << left << setw(30) << operation << " " << str << endl;
}

__global__ void fillAB(float *aValues, int *aRowPtrs, int *aColIdxs, float *b, int const n) {
    int i = blockDim.x * blockIdx.x   threadIdx.x;
    if (i >= n) return;
    if (i == 0) {
        float xn = 10 * (n   1);
        aValues[n * 3] = xn;
        aRowPtrs[0] = 0;
        aRowPtrs[n   1] = n * 3   1;
        aColIdxs[n * 3] = n;
        b[n] = xn * 2;
    }
    float xi = 10 * (i   1);
    aValues[i * 3   0] = xi;
    aValues[i * 3   1] = xi   5;
    aValues[i * 3   2] = xi - 5;
    aColIdxs[i * 3   0] = i;
    aColIdxs[i * 3   1] = i   1;
    aColIdxs[i * 3   2] = i;
    aRowPtrs[i   1] = 2   (i * 3);
    b[i] = xi * 2;
}

int main() {
    int const n = (int)pow(2, 14);  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<< N HERE
    int const valCount = n * 3 - 2;
    float *const aValues = new float[valCount];
    int *const aRowPtrs = new int[n   1];
    int *const aColIdxs = new int[valCount];
    float *const b = new float[n];
    float *const x = new float[n];

    float *dev_aValues;
    int *dev_aRowPtrs;
    int *dev_aColIdxs;
    float *dev_b;
    float *dev_x;
    int aValuesSize = sizeof(float) * valCount;
    int aRowPtrsSize = sizeof(int) * (n   1);
    int aColIdxsSize = sizeof(int) * valCount;
    int bSize = sizeof(float) * n;
    int xSize = sizeof(float) * n;
    cudaMalloc((void**)amp;dev_aValues, aValuesSize);
    cudaMalloc((void**)amp;dev_aRowPtrs, aRowPtrsSize);
    cudaMalloc((void**)amp;dev_aColIdxs, aColIdxsSize);
    cudaMalloc((void**)amp;dev_b, bSize);
    cudaMalloc((void**)amp;dev_x, xSize);
    fillAB<<<1024, (int)ceil(n / 1024.f)>>>(dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, n - 1);
    cudaMemcpy(aValues, dev_aValues, aValuesSize, cudaMemcpyDeviceToHost);
    cudaMemcpy(aRowPtrs, dev_aRowPtrs, aRowPtrsSize, cudaMemcpyDeviceToHost);
    cudaMemcpy(aColIdxs, dev_aColIdxs, aColIdxsSize, cudaMemcpyDeviceToHost);
    cudaMemcpy(b, dev_b, bSize, cudaMemcpyDeviceToHost);

    cusolverSpHandle_t handle;
    checkCudaCusolverStatus(cusolverSpCreate(amp;handle), "cusolverSpCreate");
    cusparseMatDescr_t aDescr;
    cusparseCreateMatDescr(amp;aDescr);
    cusparseSetMatIndexBase(aDescr, CUSPARSE_INDEX_BASE_ZERO);
    cusparseSetMatType(aDescr, CUSPARSE_MATRIX_TYPE_GENERAL);
    int singularity;
    cusolverStatus_t status;
    cusolverSpScsrlsvqr(handle, n, valCount, aDescr, dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, 0.1f, 0, dev_x, amp;singularity);
    cudaDeviceSynchronize();
    auto t0 = chrono::high_resolution_clock::now();
    for (int i = 0; i < 10;   i)
        ////////////////////// CUSOLVER HERE //////////////////////
        status = cusolverSpScsrlsvqr(handle, n, valCount, aDescr, dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, 0.1f, 0, dev_x, amp;singularity);
        //status = cusolverSpScsrlsvqrHost(handle, n, valCount, aDescr, aValues, aRowPtrs, aColIdxs, b, 0.1f, 0, x, amp;singularity);
        ///////////////////////////////////////////////////////////
    cudaDeviceSynchronize();
    auto t1 = chrono::high_resolution_clock::now();
    checkCudaCusolverStatus(status, "cusolverSpScsrlsvqr");
    checkCudaCusolverStatus(cusolverSpDestroy(handle), "cusolverSpDestroy");
    cout << "System solved: " << setw(20) << fixed << right << setprecision(3) << (t1 - t0).count() / 10.0 / 1000000 << " ms" << endl;

    cudaMemcpy(x, dev_x, xSize, cudaMemcpyDeviceToHost);
    /*for (int i = 0; i < n;   i) {
        cout << " " << x[i];
    }*/
    cudaFree(dev_aValues);
    cudaFree(dev_aRowPtrs);
    cudaFree(dev_aColIdxs);
    cudaFree(dev_b);
    cudaFree(dev_x);
    delete[] aValues;
    delete[] aRowPtrs;
    delete[] aColIdxs;
    delete[] b;
    delete[] x;
    cudaDeviceReset();
    return 0;
}
  

Комментарии:

1. Я предполагаю, что проблема здесь в том, что это трехдиагональная матрица. Я подозреваю, что это может устранить некоторые аспекты параллелизма, которые были бы полезны для процедуры GPU cusolver. Я подозреваю, что у вас будет более удовлетворительная производительность при использовании подпрограммы, которая знает, что ваша матрица трехдиагональная, и это было бы cusparseSgtsv2 . Согласно моему тестированию, это примерно в 40 раз быстрее, чем ваш вариант хост-кода.

2. @RobertCrovella, вау, спасибо! Это даже быстрее, чем я ожидал. Отправьте ответ, пожалуйста.

3. Осталась одна интересная вещь cusparseSgtsv2 : вычисляет систему 2^12 уравнений медленнее, чем 2^14 🙂 Но это не большая проблема.

Ответ №1:

Я предполагаю, что проблема здесь в том, что это трехдиагональная матрица. Я подозреваю, что это может устранить некоторые аспекты параллелизма, которые были бы полезны для процедуры GPU cusolver. На самом деле у меня нет никаких оснований для этого утверждения, за исключением того, что я прочитал в cusparse docs утверждения, подобные этому:

Например, трехдиагональная матрица не имеет параллелизма.

Я не могу точно сказать, что это значит, за исключением того, что это наводит меня на мысль, что для трехдиагональной матрицы, возможно, оправдан другой подход. И cusparse предоставляет решатели специально для трехдиагонального случая.

Если мы используем один из них, мы можем получить результаты, которые быстрее, чем ваш конкретный пример cusolver для хоста, в вашем тестовом примере. Вот пример:

 $ cat t48.cu
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <cusolverSp.h>
#include <cusparse_v2.h>

#include <stdio.h>
#include <iostream>
#include <iomanip>
#include <chrono>
#include <cassert>
#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL

unsigned long long dtime_usec(unsigned long long start){

  timeval tv;
  gettimeofday(amp;tv, 0);
  return ((tv.tv_sec*USECPSEC) tv.tv_usec)-start;
}
#ifdef USE_DOUBLE
#define START 3
#define TOL 0.000001
#define THR 0.00001
typedef double mt;
#else
#define START 0
#define TOL 0.01
#define THR 0.1
typedef float mt;
#endif


using namespace std;

void checkCudaCusolverStatus(cusolverStatus_t status, char const* operation) {
    char const *str = "UNKNOWN STATUS";
    switch (status) {
    case CUSOLVER_STATUS_SUCCESS:
        str = "CUSOLVER_STATUS_SUCCESS";
        break;
    case CUSOLVER_STATUS_NOT_INITIALIZED:
        str = "CUSOLVER_STATUS_NOT_INITIALIZED";
        break;
    case CUSOLVER_STATUS_ALLOC_FAILED:
        str = "CUSOLVER_STATUS_ALLOC_FAILED";
        break;
    case CUSOLVER_STATUS_INVALID_VALUE:
        str = "CUSOLVER_STATUS_INVALID_VALUE";
        break;
    case CUSOLVER_STATUS_ARCH_MISMATCH:
        str = "CUSOLVER_STATUS_ARCH_MISMATCH";
        break;
    case CUSOLVER_STATUS_MAPPING_ERROR:
        str = "CUSOLVER_STATUS_MAPPING_ERROR";
        break;
    case CUSOLVER_STATUS_EXECUTION_FAILED:
        str = "CUSOLVER_STATUS_EXECUTION_FAILED";
        break;
    case CUSOLVER_STATUS_INTERNAL_ERROR:
        str = "CUSOLVER_STATUS_INTERNAL_ERROR";
        break;
    case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
        str = "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED";
        break;
    case CUSOLVER_STATUS_ZERO_PIVOT:
        str = "CUSOLVER_STATUS_ZERO_PIVOT";
        break;
    }
    cout << left << setw(30) << operation << " " << str << endl;
}

__global__ void fillAB(mt *aValues, int *aRowPtrs, int *aColIdxs, mt *b, int const n) {
    int i = blockDim.x * blockIdx.x   threadIdx.x;
    if (i >= n) return;
    if (i == 0) {
        mt xn = 10 * (n   1);
        aValues[n * 3] = xn;
        aRowPtrs[0] = 0;
        aRowPtrs[n   1] = n * 3   1;
        aColIdxs[n * 3] = n;
        b[n] = xn * 2;
    }
    mt xi = 10 * (i   1);
    aValues[i * 3   0] = xi;
    aValues[i * 3   1] = xi   5;
    aValues[i * 3   2] = xi - 5;
    aColIdxs[i * 3   0] = i;
    aColIdxs[i * 3   1] = i   1;
    aColIdxs[i * 3   2] = i;
    aRowPtrs[i   1] = 2   (i * 3);
    b[i] = xi * 2;
}
__global__ void filld3(mt *d, mt *du, mt *dl, mt *aValues, mt *b, mt *b2, const int n){
        int i = blockDim.x*blockIdx.x threadIdx.x;
        if ((i > 0) amp;amp; (i < n-1)){
                dl[i] = aValues[i*3 - 1];
                d[i] = aValues[i*3];
                du[i] = aValues[i*3 1];
        }
        if (i == 0){
                dl[0] = 0;
                d[0]  = aValues[0];
                du[0] = aValues[1];}
        if (i == (n-1)){
                dl[i] = aValues[i*3-1];
                d[i]  = aValues[i*3];
                du[i] = 0;}
        if (i < n) b2[i] = b[i];
}

int main() {
    int const n = (int)pow(2, 14);  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<< N HERE
    int const valCount = n * 3 - 2;
    mt *const aValues = new mt[valCount];
    int *const aRowPtrs = new int[n   1];
    int *const aColIdxs = new int[valCount];
    mt *const b = new mt[n];
    mt *const x = new mt[n];
    mt *const x2= new mt[n];

    mt *dev_aValues;
    int *dev_aRowPtrs;
    int *dev_aColIdxs;
    mt *dev_b;
    mt *dev_x;
    mt *dev_b2, *dev_d, *dev_dl, *dev_du;
    int aValuesSize = sizeof(mt) * valCount;
    int aRowPtrsSize = sizeof(int) * (n   1);
    int aColIdxsSize = sizeof(int) * valCount;
    int bSize = sizeof(mt) * n;
    int xSize = sizeof(mt) * n;
    cudaMalloc((void**)amp;dev_aValues, aValuesSize);
    cudaMalloc((void**)amp;dev_aRowPtrs, aRowPtrsSize);
    cudaMalloc((void**)amp;dev_aColIdxs, aColIdxsSize);
    cudaMalloc((void**)amp;dev_b, bSize);
    cudaMalloc((void**)amp;dev_x, xSize);
    cudaMalloc((void**)amp;dev_b2, bSize);
    cudaMalloc(amp;dev_d,  n*sizeof(mt));
    cudaMalloc(amp;dev_dl, n*sizeof(mt));
    cudaMalloc(amp;dev_du, n*sizeof(mt));
    fillAB<<<1024, (int)ceil(n / 1024.f)>>>(dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, n - 1);
    filld3<<<(n 1023)/1024,1024>>>(dev_d, dev_du, dev_dl, dev_aValues, dev_b, dev_b2, n);
    cudaMemcpy(aValues, dev_aValues, aValuesSize, cudaMemcpyDeviceToHost);
    cudaMemcpy(aRowPtrs, dev_aRowPtrs, aRowPtrsSize, cudaMemcpyDeviceToHost);
    cudaMemcpy(aColIdxs, dev_aColIdxs, aColIdxsSize, cudaMemcpyDeviceToHost);
    cudaMemcpy(b, dev_b, bSize, cudaMemcpyDeviceToHost);

    cusolverSpHandle_t handle;
    checkCudaCusolverStatus(cusolverSpCreate(amp;handle), "cusolverSpCreate");
    cusparseMatDescr_t aDescr;
    cusparseCreateMatDescr(amp;aDescr);
    cusparseSetMatIndexBase(aDescr, CUSPARSE_INDEX_BASE_ZERO);
    cusparseSetMatType(aDescr, CUSPARSE_MATRIX_TYPE_GENERAL);
    int singularity;
    cusolverStatus_t status;
    unsigned long long dt = dtime_usec(0);
#ifdef USE_DOUBLE
    cusolverSpDcsrlsvqr(handle, n, valCount, aDescr, dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, 0.1f, 0, dev_x, amp;singularity);
#else
    cusolverSpScsrlsvqr(handle, n, valCount, aDescr, dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, 0.1f, 0, dev_x, amp;singularity);
#endif
    cudaDeviceSynchronize();
    dt = dtime_usec(dt);
    std::cout << "time: " << dt/(float)USECPSEC << "s" << std::endl;
    auto t0 = chrono::high_resolution_clock::now();
    for (int i = 0; i < 10;   i)
        ////////////////////// CUSOLVER HERE //////////////////////
#ifdef USE_DEVICE
#ifdef USE_DOUBLE
        status = cusolverSpDcsrlsvqr(handle, n, valCount, aDescr, dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, 0.1f, 0, dev_x, amp;singularity);
#else
        status = cusolverSpScsrlsvqr(handle, n, valCount, aDescr, dev_aValues, dev_aRowPtrs, dev_aColIdxs, dev_b, 0.1f, 0, dev_x, amp;singularity);
#endif
#else
#ifdef USE_DOUBLE
        status = cusolverSpDcsrlsvqrHost(handle, n, valCount, aDescr, aValues, aRowPtrs, aColIdxs, b, 0.1f, 0, x, amp;singularity);
#else
        status = cusolverSpScsrlsvqrHost(handle, n, valCount, aDescr, aValues, aRowPtrs, aColIdxs, b, 0.1f, 0, x, amp;singularity);
#endif
#endif
    ///////////////////////////////////////////////////////////
    cudaDeviceSynchronize();
    auto t1 = chrono::high_resolution_clock::now();
    checkCudaCusolverStatus(status, "cusolverSpScsrlsvqr");
    checkCudaCusolverStatus(cusolverSpDestroy(handle), "cusolverSpDestroy");
    cout << "System solved: " << setw(20) << fixed << right << setprecision(6) << (t1 - t0).count() / 10.0 / 1000000 << " ms" << endl;

    cudaMemcpy(x, dev_x, xSize, cudaMemcpyDeviceToHost);
    /*for (int i = 0; i < n;   i) {
        cout << " " << x[i];
    }*/
    cusparseHandle_t csphandle;
    cusparseStatus_t  cstat = cusparseCreate(amp;csphandle);
    assert(cstat == CUSPARSE_STATUS_SUCCESS);
    size_t bufferSize;
#ifdef USE_DOUBLE
    cstat = cusparseDgtsv2_nopivot_bufferSizeExt(csphandle, n, 1, dev_dl, dev_d, dev_du, dev_b2, n, amp;bufferSize);
#else
    cstat = cusparseSgtsv2_nopivot_bufferSizeExt(csphandle, n, 1, dev_dl, dev_d, dev_du, dev_b2, n, amp;bufferSize);
#endif
    assert(cstat == CUSPARSE_STATUS_SUCCESS);
    unsigned char *dev_buffer;
    cudaMalloc(amp;dev_buffer, bufferSize);
    dt = dtime_usec(0);
#ifdef USE_DOUBLE
    cstat = cusparseDgtsv2_nopivot(csphandle, n, 1, dev_dl, dev_d, dev_du, dev_b2, n, (void *)dev_buffer);
#else
    cstat = cusparseSgtsv2_nopivot(csphandle, n, 1, dev_dl, dev_d, dev_du, dev_b2, n, (void *)dev_buffer);
#endif
    if(cstat != CUSPARSE_STATUS_SUCCESS) {std::cout << "cusparse solve error: " << (int)cstat  << std::endl;}
    cudaDeviceSynchronize();
    dt = dtime_usec(dt);
    std::cout << "cusparse time: " << (dt*1000.f)/(float)USECPSEC << "ms" << std::endl;
    std::cout << cudaGetErrorString(cudaGetLastError()) << std::endl;
    cudaMemcpy(x2, dev_b2, xSize, cudaMemcpyDeviceToHost);
    for (int i = START; i < n; i  ) if ((x[i] > THR) amp;amp; (fabs((x[i] - x2[i])/x[i]) > TOL)) {std::cout << "mismatch at: " << i << " was: " << x2[i] << " should be: " << x[i] << std::endl; return 0;}

    for (int i = 0; i < 40; i  )
            std::cout << x2[i] << "    " << x[i] <<  std::endl;
    cudaFree(dev_aValues);
    cudaFree(dev_aRowPtrs);
    cudaFree(dev_aColIdxs);
    cudaFree(dev_b);
    cudaFree(dev_x);
    delete[] aValues;
    delete[] aRowPtrs;
    delete[] aColIdxs;
    delete[] b;
    delete[] x;
    cudaDeviceReset();
    return 0;
}
$ nvcc -o t48 t48.cu -lcusparse -lcusolver
$ ./t48
cusolverSpCreate               CUSOLVER_STATUS_SUCCESS
time: 0.202933s
cusolverSpScsrlsvqr            CUSOLVER_STATUS_SUCCESS
cusolverSpDestroy              CUSOLVER_STATUS_SUCCESS
System solved:             6.653404 ms
cusparse time: 0.089000ms
no error
-11243.155273    -11242.705078
7496.770508    7496.473145
-3747.185303    -3747.039551
0.685791    0.689445
2083.059570    2082.854004
-1892.308716    -1892.124756
306.474457    306.447662
1103.516846    1103.407104
-1271.085938    -1270.961060
334.883911    334.852417
711.941956    711.870911
-955.718140    -955.624390
321.378174    321.348175
506.580902    506.530060
-764.231689    -764.156799
300.298950    300.270935
382.335785    382.299347
-635.448120    -635.388000
279.217651    279.191864
300.164459    300.135559
-542.869019    -542.817688
259.955475    259.931702
242.390839    242.367310
-473.107758    -473.063080
242.806229    242.785751
199.916733    199.895645
-418.663696    -418.624115
227.637909    227.618652
167.604431    167.586487
-375.002411    -374.966827
214.208069    214.189835
142.353058    142.337738
-339.221130    -339.187653
202.273911    202.255341
122.184746    122.171494
-309.370209    -309.339600
191.615189    191.597580
105.783485    105.771858
-284.096802    -284.068604
182.047958    182.031158
$
  

Примечания:

  1. здесь нет претензий на правильность или пригодность. В основном это ваш код, который я немного изменил для изучения.
  2. Результаты между методами не совпадают точно, но в данном float случае они находятся примерно в пределах 1% друг от друга. Я думаю, что отчасти это связано с float разрешением, но могут быть и другие факторы. Без дальнейшего изучения у меня не было бы никаких оснований утверждать, что один из них «более правильный», чем другой.
  3. Я использовал nopivot вариант gtsv2 , потому что, казалось, предполагалось, что это будет быстрее в случае размера power-of-2, который является вашим случаем. И, согласно моему тестированию, это было быстрее.
  4. Когда я запускаю nopivot case размером 2 ^ 12 вместо 2 ^ 14, он, безусловно, работает быстрее на моем графическом процессоре (GTX 960). YMMV.
  5. Я удалил множество другого мусора в коде, когда я исследовал разные вещи, так что это немного запутанно.
  6. Опять же, я действительно не могу объяснить случай cusolver. Предположения о трехдиагональной природе проблемы — это просто предположение. Тем не менее, мне кажется вероятным, что если разработчики cusparse нашли вескую причину для предоставления (отдельного) набора решателей для трехдиагонального случая, для этого может быть какая-то разумная причина (т. Е. Какой-То аспект проблемы, который можно использовать, когда эта информация известна априори). Поэтому кажется разумным использовать их, и в этом случае, похоже, он работает быстрее.