#python #tensorflow #keras #deep-learning #pickle
#python #тензорный поток #keras #глубокое обучение #рассол
Вопрос:
Прочитайте ряд похожих вопросов, в большинстве из них упоминалось, что вам не следует пытаться сериализовать несериализуемый объект. Я не могу понять проблему. Я могу сохранить модель как файл .h5, но это не соответствует цели того, что я пытаюсь сделать. Пожалуйста, помогите!
def image_generator(train_data_dir, test_data_dir):
train_datagen = ImageDataGenerator(rescale=1/255,
rotation_range = 30,
zoom_range = 0.2,
width_shift_range=0.1,
height_shift_range=0.1,
validation_split = 0.15)
test_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(train_data_dir,
target_size = (160,160),
batch_size = 32,
class_mode = 'categorical',
subset='training')
val_generator = train_datagen.flow_from_directory(train_data_dir,
target_size = (160,160),
batch_size = 32,
class_mode = 'categorical',
subset = 'validation')
test_generator = test_datagen.flow_from_directory(test_data_dir,
target_size=(160,160),
batch_size = 32,
class_mode = 'categorical')
return train_generator, val_generator, test_generator
def model_output_for_TL (pre_trained_model, last_output):
x = Flatten()(last_output)
# Dense hidden layer
x = Dense(512, activation='relu')(x)
x = Dropout(0.2)(x)
# Output neuron.
x = Dense(2, activation='softmax')(x)
model = Model(pre_trained_model.input, x)
return model
train_generator, validation_generator, test_generator = image_generator(train_dir,test_dir)
pre_trained_model = InceptionV3(input_shape = (160, 160, 3),
include_top = False,
weights = 'imagenet')
for layer in pre_trained_model.layers:
layer.trainable = False
last_layer = pre_trained_model.get_layer('mixed5')
last_output = last_layer.output
model_TL = model_output_for_TL(pre_trained_model, last_output)
model_TL.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history_TL = model_TL.fit(
train_generator,
steps_per_epoch=10,
epochs=10,
verbose=1,
validation_data = validation_generator)
pickle.dump(model_TL,open('img_model.pkl','wb'))
Ответ №1:
Я смог воспроизвести вашу проблему в TF 2.3.0 с помощью Google Colab
import pickle
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(1, input_dim=42, activation='sigmoid'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
with open('model.pkl', 'wb') as f:
pickle.dump(model, f)
Вывод:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-1-afb2bf58a891> in <module>()
8
9 with open('model.pkl', 'wb') as f:
---> 10 pickle.dump(model, f)
TypeError: can't pickle _thread.RLock objects
@adriangb, предложенное горячее исправление этой проблемы в github для получения более подробной информации, пожалуйста, обратитесь к этому
import pickle
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense
from tensorflow.python.keras.layers import deserialize, serialize
from tensorflow.python.keras.saving import saving_utils
def unpack(model, training_config, weights):
restored_model = deserialize(model)
if training_config is not None:
restored_model.compile(
**saving_utils.compile_args_from_training_config(
training_config
)
)
restored_model.set_weights(weights)
return restored_model
# Hotfix function
def make_keras_picklable():
def __reduce__(self):
model_metadata = saving_utils.model_metadata(self)
training_config = model_metadata.get("training_config", None)
model = serialize(self)
weights = self.get_weights()
return (unpack, (model, training_config, weights))
cls = Model
cls.__reduce__ = __reduce__
# Run the function
make_keras_picklable()
# Create the model
model = Sequential()
model.add(Dense(1, input_dim=42, activation='sigmoid'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Save
with open('model.pkl', 'wb') as f:
pickle.dump(model, f)
Ответ №2:
Улучшенную версию исправления, связанную с принятым ответом, можно найти здесь . Хотя это немного сложнее, скорее всего, оно будет работать в будущей версии TensorFlow. В этой версии также исправлен tensorflow / tensorflow #44670.
Источник: я являюсь автором исправления, указанного выше, а также этой улучшенной версии.