#python #scikit-learn #cross-validation
#python #scikit-learn #перекрестная проверка
Вопрос:
Я создал пользовательский оценщик sklearn (statsmodels.regression.linear_model.WLS с лассо) для использования перекрестной проверки. check_estimator() сообщает об ошибке, но я ничего не могу сделать неправильно, и, похоже, он запускается.
class SMWrapper(BaseEstimator, RegressorMixin):
def __init__(self, alpha=0, lasso=True):
self.alpha = alpha
self.lasso = lasso
def fit(self, X, y):
# unpack weight from X
self.model_ = WLS(y, X[:,:-1], weights=X[:,-1])
if self.lasso:
L1_wt = 1
else:
L1_wt = 0
self.results_ = self.model_.fit_regularized(alpha=self.alpha, L1_wt=L1_wt, method='sqrt_lasso')
return self
def predict(self, X):
return self.results_.predict(X[:,:-1])
# yy shape is (nb_obs), xx shape is (nb_xvar, nb_obs), weight shape is (nb_obs)
# pack weight as one more xvar, so that train/validation split will be done properly on weight.
lenx = len(xx)
xxx = np.full((yy.shape[0], lenx 1), 0.0)
for i in range(lenx):
xxx[:,i] = xx[i]
xxx[:,lenx] = weight
lassoReg = SMWrapper(lasso=lasso)
param_grid = {'alpha': alpha}
grid_search = GridSearchCV(lassoReg, param_grid, cv=10, scoring='neg_mean_squared_error',return_train_score=True)
grid_search.fit(xxx, yy)
Я делаю:
from sklearn.utils.estimator_checks import check_estimator
check_estimator(SMWrapper())
Выдает ошибку:
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
<ipython-input-518-6da3cc5b584c> in <module>()
----> 1 check_estimator(SMWrapper())
/nfs/geardata/anaconda2/lib/python2.7/site-packages/sklearn/utils/estimator_checks.pyc in check_estimator(Estimator)
302 for check in _yield_all_checks(name, estimator):
303 try:
--> 304 check(name, estimator)
305 except SkipTest as exception:
306 # the only SkipTest thrown currently results from not
/nfs/geardata/anaconda2/lib/python2.7/site-packages/sklearn/utils/testing.pyc in wrapper(*args, **kwargs)
346 with warnings.catch_warnings():
347 warnings.simplefilter("ignore", self.category)
--> 348 return fn(*args, **kwargs)
349
350 return wrapper
/nfs/geardata/anaconda2/lib/python2.7/site-packages/sklearn/utils/estimator_checks.pyc in check_estimators_dtypes(name, estimator_orig)
1100 estimator = clone(estimator_orig)
1101 set_random_state(estimator, 1)
-> 1102 estimator.fit(X_train, y)
1103
1104 for method in methods:
<ipython-input-516-613d1ce7615e> in fit(self, X, y)
10 else:
11 L1_wt = 0
---> 12 self.results_ = self.model_.fit_regularized(alpha=self.alpha, L1_wt=L1_wt, method='sqrt_lasso')
13 return self
14 def predict(self, X):
/nfs/geardata/anaconda2/lib/python2.7/site-packages/statsmodels/regression/linear_model.pyc in fit_regularized(self, method, alpha, L1_wt, start_params, profile_scale, refit, **kwargs)
779 start_params=start_params,
780 profile_scale=profile_scale,
--> 781 refit=refit, **kwargs)
782
783 from statsmodels.base.elastic_net import (
/nfs/geardata/anaconda2/lib/python2.7/site-packages/statsmodels/regression/linear_model.pyc in fit_regularized(self, method, alpha, L1_wt, start_params, profile_scale, refit, **kwargs)
998 RegularizedResults, RegularizedResultsWrapper
999 )
-> 1000 params = self._sqrt_lasso(alpha, refit, defaults["zero_tol"])
1001 results = RegularizedResults(self, params)
1002 return RegularizedResultsWrapper(results)
/nfs/geardata/anaconda2/lib/python2.7/site-packages/statsmodels/regression/linear_model.pyc in _sqrt_lasso(self, alpha, refit, zero_tol)
1052 G1 = cvxopt.matrix(0., (n 1, 2*p 1))
1053 G1[0, 0] = -1
-> 1054 G1[1:, 1:p 1] = self.exog
1055 G1[1:, p 1:] = -self.exog
1056
NotImplementedError: invalid type in assignment
Debug говорит, что форма G1 и self.exog одинаковы (self.exog — это float, G1 также выглядит как float):
ipdb> self.exog.shape
(20, 4)
ipdb> G1[1:, 1:p 1]
<20x4 matrix, tc='d'>
Что может быть не так с моим кодом? Я проверяю, является ли результат правильным, что может занять некоторое время.
Спасибо.
Ответ №1:
Я полагаю, что вы получаете это сообщение об ошибке из-за ошибки (несоответствие типов) в WLS. Сравнить:
import cvxopt
n =10
p = 5
G1 = cvxopt.matrix(0., (n 1, 2*p 1))
G1[0, 0] = -1
x = np.zeros((10,5))
G1[1:, 1:p 1] = x.astype("float64")
против:
G1[1:, 1:p 1] = x.astype("float32")
NotImplementedError Traceback (most recent call last)
<ipython-input-82-d517da814a22> in <module>
6 G1[0, 0] = -1
7 x = np.zeros((10,5))
----> 8 G1[1:, 1:p 1] = x.astype("float32")
NotImplementedError: invalid type in assignment
Эта [конкретная] ошибка может быть исправлена:
class SMWrapper(BaseEstimator, RegressorMixin):
def __init__(self, alpha=0, lasso=True):
self.alpha = alpha
self.lasso = lasso
def fit(self, X, y):
# unpack weight from X
self.model_ = WLS(y, X[:,:-1].astype("float64"), weights=X[:,-1]) # note astype
if self.lasso:
L1_wt = 1
else:
L1_wt = 0
self.results_ = self.model_.fit_regularized(alpha=self.alpha, L1_wt=L1_wt, method='sqrt_lasso')
return self
def predict(self, X):
return self.results_.predict(X[:,:-1])
но тогда вы столкнетесь с другой ошибкой: check_complex_data
(вы можете увидеть определение здесь )
Проблема, с которой вы сталкиваетесь check_estimator
, слишком строга в отношении того, какие проверки должен пройти оценщик (WLS в вашем случае). Вы можете увидеть список всех проверок с помощью:
from sklearn.utils.estimator_checks import check_estimator
gen = check_estimator(SMWrapper(), generate_only=True)
for x in iter(gen):
print(x)
WLS не проходит все проверки, как для комплексных чисел (мы перешли из строки 2 в строку 11), но работает с вашими данными на практике, так что вы можете смириться с этим (или перекодировать его с нуля).
Редактировать
Допустимым вопросом может быть «какой тест выполняется, а какой не выполняется». Для этого вы можете проверить https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_22_0.html#checking-scikit-learn-compatibility-of-an-estimator и sklearn.utils.estimator_checks._yield_checks для генератора доступных проверок для вашего оценщика
РЕДАКТИРОВАТЬ 2
Альтернативой для версии 0.24 может быть:
check_estimator(SMWrapper(), strict_mode=False)
Комментарии:
1. @user4918159 Это вам помогает? Если это так, вы можете подумать о том, чтобы принять его.