CNN ValueError: неизвестный уровень: функциональный при тестировании моей модели

#python #tensorflow #keras #neural-network #conv-neural-network

#python #тензорный поток #keras #нейронная сеть #conv-нейронная сеть

Вопрос:

 import os
import numpy as np
import pandas as pd
import cv2
from glob import glob
from tqdm import tqdm
import tensorflow as tf
from sklearn.model_selection import train_test_split

def read_image(path, size):
    image = cv2.imread(path, cv2.IMREAD_COLOR)
    image = cv2.resize(image, (size, size))
    image = image / 255.0
    image = image.astype(np.float32)
    return image

if __name__ == "__main__":
    path = "Dog Breed Identification/"
    train_path = os.path.join(path, "train/*")
    test_path = os.path.join(path, "test/*")
    labels_path = os.path.join(path, "labels.csv")

    labels_df = pd.read_csv(labels_path)
    breed = labels_df["breed"].unique()
    print("Number of Breed: ", len(breed))

    breed2id = {name: i for i, name in enumerate(breed)}
    id2breed = {i: name for i, name in enumerate(breed)}

    ids = glob(train_path)
    labels = []

    for image_id in ids:
        image_id = image_id.split("\")[-1].split(".")[0]
        breed_name = list(labels_df[labels_df.id == image_id]["breed"])[0]
        breed_idx = breed2id[breed_name]
        labels.append(breed_idx)

    ids = ids[:1000]
    labels = labels[:1000]

    ## Spliting the dataset
    train_x, valid_x = train_test_split(ids, test_size=0.2, random_state=42)
    train_y, valid_y = train_test_split(labels, test_size=0.2, random_state=42)

    ## Model
    model = tf.keras.models.load_model('model.h5')

    for i, path in tqdm(enumerate(valid_x[:10])):
        image = read_image(path, 224)
        image = np.expand_dims(image, axis=0)
        pred = model.predict(image)[0]
        label_idx = np.argmax(pred)
        breed_name = id2breed[label_idx]
        ori_breed = id2breed[valid_y[i]]
        ori_image = cv2.imread(path, cv2.IMREAD_COLOR)
        ori_image = cv2.putText(ori_image, breed_name, (0, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
        ori_image = cv2.putText(ori_image, ori_breed, (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
        cv2.imwrite(f"save/valid_{i}.png", ori_image)`enter code here`
  
 2020-09-26 10:05:36.196524: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll


Number of Breed:  120

Traceback (most recent call last):

  File "D:WoRkZCSE465ProjectNew folderDog Breed Classificationtest.py", line 48, in <module>
    model = tf.keras.models.load_model('model.h5')

  File "C:UsersCatalan JMAppDataLocalPackagesPythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0LocalCachelocal-packagesPython38site-packagestensorflowpythonkerassavingsave.py", line 184, in load_model
    return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)

  File "C:UsersCatalan JMAppDataLocalPackagesPythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0LocalCachelocal-packagesPython38site-packagestensorflowpythonkerassavinghdf5_format.py", line 177, in load_model_from_hdf5
    model = model_config_lib.model_from_config(model_config,

  File "C:UsersCatalan JMAppDataLocalPackagesPythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0LocalCachelocal-packagesPython38site-packagestensorflowpythonkerassavingmodel_config.py", line 55, in model_from_config
    return deserialize(config, custom_objects=custom_objects)

  File "C:UsersCatalan JMAppDataLocalPackagesPythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0LocalCachelocal-packagesPython38site-packagestensorflowpythonkeraslayersserialization.py", line 105, in deserialize
    return deserialize_keras_object(

  File "C:UsersCatalan JMAppDataLocalPackagesPythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0LocalCachelocal-packagesPython38site-packagestensorflowpythonkerasutilsgeneric_utils.py", line 361, in deserialize_keras_object
    (cls, cls_config) = class_and_config_for_serialized_keras_object(

  File "C:UsersCatalan JMAppDataLocalPackagesPythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0LocalCachelocal-packagesPython38site-packagestensorflowpythonkerasutilsgeneric_utils.py", line 321, in class_and_config_for_serialized_keras_object
    raise ValueError('Unknown '   printable_module_name   ': '   class_name)


ValueError: Unknown layer: Functional

[Finished in 12.301s]
  

Есть идеи, что вызывает ошибку? Должен ли я переписать все это?

Ответ №1:

Неважно, все, что мне нужно сделать, это установить Tensorflow 2.3.1, исправить его и протестировать мои изображения идеально.

Несмотря на то, что это рендеринг процессора, а не рендеринг графического процессора. Из-за наличия 2020-09-26 11:12:19.333012: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Не удалось загрузить динамическую библиотеку ‘cublas64_10.dll ‘; ошибка dlerror: cublas64_10.dll не найдено

Не повлияло на тестирование моей модели. Я должен отвлечься.