#python #scikit-learn
#python #scikit-learn
Вопрос:
Я получаю странную ошибку при использовании 'roc_auc'
scorer with GridSearchCV
. Ошибка не возникает, когда я использую 'accuracy'
вместо этого. Просмотр трассировки стека, на которую она похожа y_score
, roc_curve
передается как None
, что приводит к этой ошибке column_or_1d
. Я проверил это, вызвав column_or_1d
напрямую с None
помощью as input и легко воспроизвел ошибку.
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier
from pipelinehelper.pipelinehelper import PipelineHelper
pipe = Pipeline([
('scaler', PipelineHelper([
('std', StandardScaler()),
('abs', MaxAbsScaler()),
('minmax', MinMaxScaler()),
('pca', PCA(svd_solver='full', whiten=True)),
])),
('classifier', PipelineHelper([
('knn', KNeighborsClassifier(weights='distance')),
('gbc', GradientBoostingClassifier())
])),
])
params = {
'scaler__selected_model': pipe.named_steps['scaler'].generate({
'std__with_mean': [True, False],
'std__with_std': [True, False],
'pca__n_components': [0.5, 0.75, 0.9, 0.99],
}),
'classifier__selected_model': pipe.named_steps['classifier'].generate({
'knn__n_neighbors': [1, 3, 5, 7, 10],#, 30, 50, 70, 90, 110, 130, 150, 170, 190],
'gbc__learning_rate': [0.1, 0.5, 1.0],
'gbc__subsample': [0.5, 1.0],
})
}
grid = GridSearchCV(pipe, params, scoring='roc_auc', n_jobs=1, verbose=1, cv=5)
grid.fit(X, y)
Некоторая информация об отладке
>>> X.shape
... (13885, 23)
>>> y.shape
... (13885,)
>>> X
... array([[ 0. , 0. , 0. , ..., 7.14285714,
0.9 , 35.4644354 ],
[ 0. , 0. , 0. , ..., 2.11442806,
1.2 , 54.99027913],
[ 1. , 0. , 0. , ..., 2.64959194,
0.7 , 70.07380534],
...,
[ 1. , 0. , 0. , ..., 4.375 ,
0.5 , 91.85932945],
[ 1. , 0. , 0. , ..., 3.75 ,
0.9 , 68.62436682],
[ 0. , 0. , 1. , ..., 3.01587302,
4.1 , 57.25781074]])
>>> y
... array([0, 0, 0, ..., 0, 0, 1])
>>> y.mean()
... 0.11278357940223263
>>> sklearn.__version__
'0.20.3'
Я получаю сообщение об ошибке:
python3.7/site-packages/sklearn/metrics/ranking.py in roc_curve(y_true, y_score, pos_label, sample_weight, drop_intermediate)
616 """
617 fps, tps, thresholds = _binary_clf_curve(
--> 618 y_true, y_score, pos_label=pos_label, sample_weight=sample_weight)
619
620 # Attempt to drop thresholds corresponding to points in between and
python3.7/site-packages/sklearn/metrics/ranking.py in _binary_clf_curve(y_true, y_score, pos_label, sample_weight)
399 check_consistent_length(y_true, y_score, sample_weight)
400 y_true = column_or_1d(y_true)
--> 401 y_score = column_or_1d(y_score)
402 assert_all_finite(y_true)
403 assert_all_finite(y_score)
python3.7/site-packages/sklearn/utils/validation.py in column_or_1d(y, warn)
795 return np.ravel(y)
796
--> 797 raise ValueError("bad input shape {0}".format(shape))
798
799
ValueError: bad input shape ()
Я дополнительно протестировал данные, сгенерированные с использованием следующего, и я получаю точно такую же ошибку:
from sklearn.datasets import make_classification
X_test, y_test = make_classification(100, 23)
Я перешел на использование конвейера, который не использует PipelineHelper
ошибки и, когда отсутствует, поэтому я предполагаю, что это строго и проблема с PipelineHelper
? Прежде чем я отправлю отчет об ошибке в этом проекте, мне было интересно, есть ли у кого-нибудь идеи, как обойти эту проблему?
pipe = Pipeline([
('scaler', StandardScaler()),
('classifier', GradientBoostingClassifier()),
])
params = {
'scaler__with_mean': [True, False],
'scaler__with_std': [True, False],
'classifier__learning_rate': [0.1, 0.5, 1.0],
'classifier__subsample': [0.5, 1.0],
}
PS Я использую PipelineHelper из https://github.com/bmurauer/pipelinehelper
Комментарии:
1. По какой причине вы пытаетесь придерживаться pipelinehelper, если оказывается, что он работает с конвейером обучения scikit?
Ответ №1:
Я пошел дальше и отправил отчет об ошибке в проект и переключился на альтернативное решение, найденное здесь . Как указали сопровождающие sklearn в Twitter, я мог бы также легко просто использовать встроенные инструменты sklearn и написать свой собственный код для перебора всех параметров. В любом случае я думаю, что моим рекомендуемым решением было бы не использовать PipelineHelper
, поскольку это кажется неполным.