#python #tensorflow #lstm #seq2seq
#python #тензорный поток #lstm #seq2seq
Вопрос:
Я пытаюсь реализовать LSTM с вводом (123,45,4) и выводом (123,45,1) с последовательностью из 4 целых чисел в качестве входных данных и одного числа в качестве выходных данных. Я использую Mac OS, Google Colab и TF версии 2.3.0.
Вот моя модель:
def define_models(n_input, n_output, n_units):
# define training encoder
encoder_inputs = Input(shape=(None, n_input))
encoder = LSTM(n_units, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
# define training decoder
decoder_inputs = Input(shape=(None, n_output))
decoder_lstm = LSTM(n_units, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(n_output, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# define inference encoder
encoder_model = Model(encoder_inputs, encoder_states)
# define inference decoder
decoder_state_input_h = Input(shape=(n_units,))
decoder_state_input_c = Input(shape=(n_units,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] decoder_states_inputs, [decoder_outputs] decoder_states)
# return all models
return model, encoder_model, decoder_model
Когда я пытаюсь запустить код: model.fit(x_train, y_train, epochs = 50) Я получаю ошибку: Ошибка утверждения: не удалось вычислить тензор вывода(«dense_2 / truediv: 0», форма= (Нет, None, 1), dtype=float32). Кто-нибудь знает, как это исправить?
Вот код для воспроизведения проблемы:
Загрузить данные:
with open("training_data_input.txt") as fopen:
with open("training_data_output.txt") as fopen2:
for line in fopen:
myList = line.strip().split()
myList[0] = myList[0].replace("[","")
if myList[0] == "":
myList = myList[1:]
if "][" in myList[3]:
j = 0
print(myList[3])
myList[3] = myList[3].replace(']][[',"")
if len(myList[3]) > 3:
myList[3] = (myList[3][:3])
myList = myList[:4]
myList[len(myList)-1] = myList[len(myList)-1].replace("]","")
x = np.empty((154,45,4),dtype=np.float32)
i = 0
j = 0
if j >=45:
j = 0
print(myList)
x[i][j] = myList
i =1
j =1
for line in fopen2:
myList = line.strip().split()
x_out = np.empty((154,45,1), dtype=np.float32)
myList[0] = myList[0].replace("[","")
if myList[0] == "":
myList = myList[1:]
if "][" in myList[0]:
j = 0
myList[0] = myList[0].replace(']][[',"")
if len(myList[0]) > 3:
myList[0] = (myList[0][:2])
myList = myList[:1]
myList[len(myList)-1] = myList[len(myList)-1].replace("]","")
i = 0
j = 0
if j >=45:
j = 0
x_out[i][j] = myList
i =1
print(x.shape)
print(x_out.shape)
Модель поезда:
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, x_out, test_size = 0.2, random_state = 4)
print(x_train.shape)
print(y_train.shape)
model.fit(x_train, y_train, epochs = 50)
Входные данные:
training_data_input.txt
training_data_output.txt
Ответ №1:
В model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
вы указываете 2 входа, в то время как в fit вы передаете только 1.