#python #tensorflow #machine-learning #keras #deep-learning
#python #tensorflow #машинное обучение #keras #глубокое обучение
Вопрос:
Я создал эту модель
num_items = 1250
num_users = 1453
emb_size = 64
input_userID = Input(shape=[1], name='user_ID')
input_itemID = Input(shape=[1], name='item_ID')
user_emb_GMF = Embedding(num_users, emb_size, name='user_emb_GMF')(input_userID)
item_emb_GMF = Embedding(num_items, emb_size, name='item_emb_GMF')(input_itemID)
interraction_map = tf.expand_dims(Dot(axes=1)([user_emb_GMF,item_emb_GMF]), -1)
print(interraction_map)
conv = Conv2D(32, 2, strides=2, activation='relu', padding="SAME", input_shape=interraction_map.shape[1:], name='conv1')(interraction_map)
for i in range(2,7):#les autres conv layer
conv = Conv2D(32, 2, strides=2, activation='relu', padding="SAME",name='conv%d'%(i))(conv)
reshaped_conv = Flatten()(conv)
# c'est la que je doit agir et ajouter creer la prédiction
out = Dense(1, name='output' )(reshaped_conv)
#out = Dense(1,activation='sigmoid',name='output')(layer)
oncf_model = Model([input_userID, input_itemID], out)
tf.keras.utils.plot_model(oncf_model, show_shapes=True)
и я хочу, чтобы выходной слой был результатом этой операции:
output_layer = tf.matmul(reshaped_conv, W) b
где W — тензор формы (32,1) (веса), а b — тензор формы (1) (смещение).
Интересно, эквивалентна ли в этом конкретном случае операция, выполняемая с помощью matmul, той, которую выполняет плотный слой
out = Dense(1, name='output' )(reshaped_conv)
Ответ №1:
да, они одинаковы… вы можете протестировать это самостоятельно
X = np.random.uniform(0,1, (32,10)).astype('float32')
x = Dense(1)
pred = x(X)
W, b = x.get_weights()
(pred == (tf.matmul(X, W) b)).numpy().all() # TRUE