#r #forecast #fable-r #fabletools
#r #прогноз #fable-r #fablet tools
Вопрос:
Я построил следующий график вентилятора, используя fable
пакет в R. Мне интересно, есть ли у кого-нибудь совет относительно того, почему исходная точка моего вентилятора прогноза находится не на фактической строке (внешние точки в начале довольно далеки от фактической строки)? Это ошибка моделирования или проблема с данными, которую я не могу избежать?
Вот воспроизводимый мой набор данных
structure(list(Date = structure(c(12418, 12509, 12600, 12692,
12784, 12874, 12965, 13057, 13149, 13239, 13330, 13422, 13514,
13604, 13695, 13787, 13879, 13970, 14061, 14153, 14245, 14335,
14426, 14518, 14610, 14700, 14791, 14883, 14975, 15065, 15156,
15248, 15340, 15431, 15522, 15614, 15706, 15796, 15887, 15979,
16071, 16161, 16252, 16344, 16436, 16526, 16617, 16709, 16801,
16892, 16983, 17075, 17167, 17257, 17348, 17440, 17532, 17622,
17713, 17805), fiscal_start = 1, class = c("yearquarter", "vctrs_vctr"
)), Index = c(99.9820253708305, 100.194245830908, 100.464139353185,
100.509664967831, 100.0275008635, 100.372695892486, 100.468066533557,
100.576244163805, 100.623717628381, 100.780442246863, 100.65264776914,
100.69366042058, 100.909079987983, 101.018619794549, 100.959015810121,
101.04835942569, 100.681089538573, 100.663660573108, 100.522268447626,
100.22783149065, 99.4643787364223, 99.4331456182866, 99.5626187912313,
100.039081681562, 100.418818090577, 100.4652077117, 100.544938523663,
100.643407515773, 100.44741458842, 100.502455228311, 100.695097023592,
100.716907300461, 100.555884307168, 100.503742436422, 100.432566888692,
100.553320081068, 100.32442656222, 100.456727368091, 100.350509427919,
100.677833560057, 100.362403841025, 100.827860652847, 100.499496900756,
100.418652455482, 100.234221207155, 100.25208930362, 100.159571677823,
100.229735300634, 100.369332695161, 100.169972399177, 100.17207717391,
100.35130514679, 99.9317959389533, 99.8704136030018, 100.052802025981,
100.176345514426, 100.355049154025, 100.544145324359, 100.549886876118,
100.5559420697)), row.names = c(NA, -60L), key = structure(list(
.rows = structure(list(1:60), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), row.names = c(NA, -1L), class = c("tbl_df",
"tbl", "data.frame")), index = structure("Date", ordered = TRUE), index2 = "Date", interval = structure(list(
year = 0, quarter = 1, month = 0, week = 0, day = 0, hour = 0,
minute = 0, second = 0, millisecond = 0, microsecond = 0,
nanosecond = 0, unit = 0), .regular = TRUE, class = c("interval",
"vctrs_rcrd", "vctrs_vctr")), class = c("tbl_ts", "tbl_df", "tbl",
"data.frame"))
и мой код
fit <- afsi %>%
model(arima = ARIMA(log(Index)))
p <- fit %>%
forecast(h="2 year") %>%
autoplot(bind_rows(afsi %>% slice(tail(row_number(), 12)), select(slice(., 1), Date, Index = .mean)), level=seq(10,90,by=10), show_gap = TRUE)
geom_line(aes(Date,Index), col = '#75002B', size=1.2)
theme_bw()
labs(y='Log (AFSI)', title = 'Fanchart - Aggregate Financial Stability Index',
subtitle = '8 period forecast (2019Q1-2020Q4)')
p$layers[[1]]$aes_params$fill <- "#75002B"
p theme(legend.position = 'none')
РЕДАКТИРОВАТЬ: я ищу решение, при котором внешние полосы в моей эволюции неопределенности (веер прогноза) вначале более узкие, и со временем они расходятся, аналогично графику Банка Англии, который я прикрепил ниже
Ответ №1:
show_gap
Опция для autoplot(<fable>)
требует, чтобы исторические данные предоставлялись через autoplot(<fable>, <tsibble>, show_gap = FALSE)
.
library(fable)
library(dplyr)
library(ggplot2)
fit <- afsi %>%
model(arima = ARIMA(log(Index)))
fit %>%
forecast(h="2 year") %>%
autoplot(tail(afsi, 12), level=seq(10,90,by=10), show_gap = FALSE)
theme_bw()
labs(y='Log (AFSI)', title = 'Fanchart - Aggregate Financial Stability Index',
subtitle = '8 period forecast (2019Q1-2020Q4)')
theme(legend.position = 'none')
Создано 2020-09-23 пакетом reprex (версия 0.3.0)
Если вам нужно создать более настраиваемую графику, я предлагаю не использовать autoplot()
и написать свой собственный график с помощью ggplot2.
Чтобы графически связать прогнозы с данными, вы можете добавить в свой fable еще одну строку, которая является последним наблюдением за данными:
fc <- fit %>%
forecast(h = "2 years")
fc_no_gap <- afsi %>%
tail(1) %>%
# Match structure of fable to combine with
mutate(.model = "arima", Index = distributional::dist_degenerate(Index), .mean = mean(Index)) %>%
as_fable(distribution = Index, response = "Index") %>%
bind_rows(fc)
#> Warning: The dimnames of the fable's distribution are missing and have been set
#> to match the response variables.
Создано 2020-09-23 пакетом reprex (версия 0.3.0)
Оттуда вы можете использовать пакет {ggdist} для визуализации дистрибутивов и geom_line()
для добавления исторических данных.