#python #tensorflow #keras
#python #тензорный поток #keras
Вопрос:
Я работаю над простым MLP и закодировал это:
from keras.models import Sequential
from keras.layers import Dense
from keras import Input
def get_stats_model():
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
И в main.py
:
get_stats_model()
Который работает отлично, пока есть только метрики 'accuracy'
. при попытке с обоими 'accuracy'
и 'AUC'
, просто 'AUC'
, или 'mean_absolute_error'
, как:
from keras.models import Sequential
from keras.layers import Dense
from keras import Input
def get_stats_model():
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['AUC'])
return model
Я получаю следующую ошибку:
Traceback (most recent call last):
File "main.py", line 4, in <module>
get_stats_model()
File "/home/giuliano/Desktop/tfg/workspace/root/final/exp/mlp.py", line 64, in get_stats_model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['AUC'])
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(*args, **kwargs)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/engine/training.py", line 222, in compile
masks=masks)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/engine/training.py", line 871, in _handle_metrics
self._per_output_metrics[i], target, output, output_mask)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/engine/training.py", line 842, in _handle_per_output_metrics
metric_fn, y_true, y_pred, weights=weights, mask=mask)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/engine/training_utils.py", line 1033, in call_metric_function
update_ops = metric_fn.update_state(y_true, y_pred, sample_weight=weights)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/utils/metrics_utils.py", line 42, in decorated
update_op = update_state_fn(*args, **kwargs)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/metrics.py", line 318, in update_state
matches = self._fn(y_true, y_pred, **self._fn_kwargs)
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/keras/metrics.py", line 1660, in __init__
if num_thresholds <= 1:
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 757, in __bool__
self._disallow_bool_casting()
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 526, in _disallow_bool_casting
self._disallow_in_graph_mode("using a `tf.Tensor` as a Python `bool`")
File "/home/giuliano/anaconda3/envs/tfg/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 515, in _disallow_in_graph_mode
" this function with @tf.function.".format(task))
tensorflow.python.framework.errors_impl.OperatorNotAllowedInGraphError: using a `tf.Tensor` as a Python `bool` is not allowed in Graph execution. Use Eager execution or decorate this function with @tf.function.
И я просто не могу понять, почему единственное изменение в метриках вызывает такую ошибку, и, похоже, в Интернете не так много информации.
Мои версии пакетов:
Keras==2.3.1
tensorflow==2.1.0
Заранее спасибо.
Комментарии:
1. У меня та же версия tensorflow, но моя версия keras 2.2.4; Для меня ваш код работает со всеми видами метрик
2. Это работает для меня. У меня та же keras версии 2.3.1. Одна вещь, которую я предложу в новой виртуальной среде. Установите пакеты и попробуйте код. Во-вторых, вы можете попробовать импортировать keras из самого tensorflow. ie.
from tensorflow.keras import dense
3. Благодаря обоим, это решило проблему.
Ответ №1:
Из комментариев
- Создание
Virtual Environment
иImporting Keras
использование кода,from tensorflow import keras
решила проблему. (перефразировано из drops и Aniket Bote).