#python #tensorflow
#python #tensorflow
Вопрос:
Я хотел бы выполнить свертку в лямбда-слое, но я никак не могу заставить его работать.
kernel = [1.0,2.0,1.0] # weighted moving average
x = [ # history_size=5, num_features=10
[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0],
[2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0],
[3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0],
[4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0],
[5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0],
]
k = tf.constant(kernel, dtype=tf.float32)
y = tf.nn.conv1d(x, k, stride=1, padding='SAME')
Я понимаю, что в приведенном выше примере размеры неверны, но это фактический формат моих данных. Обучающие выборки имеют форму (history_size, num_features)
, и ядро должно свертываться по history_size, каждая функция отдельно. Буду признателен за любую помощь. Я не могу найти пример того, как выполнить tf.nn.conv1d вручную.
Ответ №1:
Вы могли бы использовать numpy.convolve()
для этого.
import numpy as np
kernel = [1.0,2.0,1.0] # weighted moving average
x = [ # history_size=5, num_features=10
[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0],
[2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0],
[3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0],
[4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0],
[5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0],
]
output = []
for i in range(len(x)):
output.append(list(np.convolve(x[i], kernel, mode = 'same')))
output
'''
[[3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 3.0],
[6.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 6.0],
[9.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 9.0],
[12.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 12.0],
[15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0]]
'''
Вы могли бы попробовать изменить mode
то, что вам больше подходит, в соответствии с документацией.
Комментарии:
1. К сожалению, я думаю, что не смогу использовать это в лямбда-слое Tensorflow
2. Если бы вы могли поделиться небольшим фрагментом вашей tf-модели для проверки, тогда можно было бы оказать дополнительную помощь.