Добавить столбцы стандартного отклонения из существующего столбца std в данные?

#python #matplotlib #standard-deviation #errorbar

#python #matplotlib #стандартное отклонение #панель ошибок

Вопрос:

Я строю диаграмму на основе следующих данных (только заголовок):

 Date    noctiluca_ave   density_ave density_sd
0   2018-03-07  2.0 1027.514332 0.091766
1   2018-03-14  4.0 1027.339988 0.285309
2   2018-03-21  1.0 1027.346413 0.183336
3   2018-03-31  1.0 1027.372996 0.170423
4   2018-04-07  0.0 1027.292119 0.187385
  

Как мне добавить столбцы стандартного отклонения (‘density_sd’) в строку density_ave?

 fig, ax = plt.subplots(figsize=(10, 10))
ax.plot(hydro_weekly2 ['Date'], hydro_weekly2 ['density_ave'], label='density weekly ave', color='purple')
ax2=ax.twinx()
ax2.plot(hydro_weekly2['Date'], hydro_weekly2['noctiluca_ave'], label='noctiluca abundance' , color='r')
ax.set_ylabel('Density')
ax.set_xlabel('Date')
ax2.set_ylabel('Noctiluca abundance/cells per m3')
ax.set(title="Noctiluca Abundance and Density 2018")


lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines   lines2, labels   labels2, loc="upper left")
  

введите описание изображения здесь

Комментарии:

1. ax.errorbar() ?

2. Спасибо за ответ. Да, это работает. Большое спасибо! Я думал, что это было сложнее, чем это 🙂 отлично

Ответ №1:

Вы могли бы либо заменить ax.plot на ax.errorbar() , либо использовать ax.fill_between() для отображения цветной полосы.

Вот пример с игрушечными данными, в котором оба подхода объединены:

 import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

N = 20
dates = pd.date_range('2018-03-07', periods=N, freq='W-WED')
hydro_weekly2 = pd.DataFrame({'Date': dates,
                              'noctiluca_ave': np.random.randint(0, 14000, N),
                              'density_ave': 1027   np.random.randn(N).cumsum() / 5,
                              'density_sd': 0.1   np.abs(np.random.randn(N) / 5)})
fig, ax = plt.subplots(figsize=(10, 10))
ax.errorbar(hydro_weekly2['Date'], hydro_weekly2['density_ave'], yerr=hydro_weekly2['density_sd'],
            label='density weekly ave', color='purple')
ax.fill_between(hydro_weekly2['Date'], hydro_weekly2['density_ave'] - hydro_weekly2['density_sd'],
                hydro_weekly2['density_ave']   hydro_weekly2['density_sd'], color='purple', alpha=0.3)
ax2 = ax.twinx()
ax2.plot(hydro_weekly2['Date'], hydro_weekly2['noctiluca_ave'], label='noctiluca abundance', color='r')
ax.set_ylabel('Density')
ax.set_xlabel('Date')
ax2.set_ylabel('Noctiluca abundance/cells per m3')
ax.set(title="Noctiluca Abundance and Density 2018")
plt.show()
  

примерный график

Комментарии:

1. Черт возьми, это фантастика. Намного больше, чем я ожидал. Большое тебе спасибо, Йохан. Я собираюсь поиграть с этим прямо сейчас…

2. Да, блестяще. Выглядит великолепно. Еще раз большое вам спасибо.

Ответ №2:

Поскольку вы имеете дело с dataframe . Вот еще один способ показать density_sd столбцы с pandas построением графика. Этот метод отлично работает и для barplot.

 import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('test.csv',parse_dates=['Date'],index_col=0)

ax = df['density_ave'].plot(yerr=df['density_sd'].T)
df['noctiluca_ave'].plot(yerr=df['density_sd'].T,secondary_y=True, ax=ax) 
## added errorbar in the secondary y as well.
plt.show() 
  

Выходной сигнал :

Выходной сигнал

Комментарии:

1. Спасибо, Викас. Это также действительно полезно.