#python-3.x #pandas #dataframe #dictionary
#python-3.x #pandas #фрейм данных #словарь
Вопрос:
У меня есть df, как показано ниже
Params Value
teachers 49
students 289
R 3.7
holidays 165
OS 18
Em_from 2020-02-29T20:00:00.000Z
Em_to 2020-03-20T20:00:00.000Z
Em_F 3
Em_C 2
sC_from 2020-03-31T20:00:00.000Z
sC_to 2020-05-29T20:00:00.000Z
sC_F 25
sC_C 31
Из приведенного выше df я хотел бы преобразовать его в словарь dictionary, как показано ниже.
dict:
{'teachers': 49,
'students': 289,
'R': 3.7,
'holidays': 165,
'OS':18,
'Em': {'from': '2020-02-29T20:00:00.000Z', 'to': '2020-03-20T20:00:00.000Z',
'F': 3, 'C': 2},
'sC': {'from': '2020-03-31T20:00:00.000Z', 'to': '2020-05-29T20:00:00.000Z',
'F': 25, 'C': 31}}
Ответ №1:
Использовать:
s = df['Params'].str.split('_')
m = s.str.len().eq(1)
d1 = df[m].set_index('Params')['Value'].to_dict()
d2 = df[~m].assign(Params=s.str[-1]).agg(tuple, axis=1)
.groupby(s.str[0]).agg(lambda s: dict(s.tolist())).to_dict()
dct = {**d1, **d2}
Результат:
{'Em': {'C': '2',
'F': '3',
'from': '2020-02-29T20:00:00.000Z',
'to': '2020-03-20T20:00:00.000Z'},
'OS': '18',
'R': '3.7',
'holidays': '165',
'sC': {'C': '31',
'F': '25',
'from': '2020-03-31T20:00:00.000Z',
'to': '2020-05-29T20:00:00.000Z'},
'students': '289',
'teachers': '49'}
Ответ №2:
Пожалуйста, всегда старайтесь предоставлять данные воспроизводимым способом, больше людей смогут задать этот вопрос
Набор данных
Params = ['teachers','students','R','holidays','OS','Em_from','Em_to','Em_F','Em_C','sC_from','sC_to','sC_F','sC_C']
Value = ['49','289','3.7','165','18','2020-02-29T20:00:00.000Z','2020-03-20T20:00:00.000Z','3','2','2020-03-31T20:00:00.000Z','2020-05-29T20:00:00.000Z','25','31']
df = pd.DataFrame(zip(Params,Value),columns=["col1","col2"])
вы можете сделать что-то вроде
d = {}
for lst in df.values:
for k,v in zip(lst[0:],lst[1:]):
if any(name in k for name in ('Em_from', 'sC_from')):d[k.split('_')[0]] = {k.split('_')[1]:v}
elif any(name in k for name in ('Em_to', 'Em_F','Em_C','sC_to','sC_F','sC_C')):d[k.split('_')[0]][k.split('_')[1]] = v
else:d[k] = v
Вывод
{'teachers': '49',
'students': '289',
'R': '3.7',
'holidays': '165',
'OS': '18',
'Em': {'from': '2020-02-29T20:00:00.000Z',
'to': '2020-03-20T20:00:00.000Z',
'F': '3',
'C': '2'},
'sC': {'from': '2020-03-31T20:00:00.000Z',
'to': '2020-05-29T20:00:00.000Z',
'F': '25',
'C': '31'}}
Ответ №3:
фреймы данных panda имеют метод to_json (см. Документы)
Там есть несколько примеров, но общий поток выглядит следующим образом, допустим, у вас есть фрейм данных с именем df
:
import json
import pandas as pd
parsed = df.to_json()
df_json = json.loads(json_df)
Прочитайте документы, чтобы увидеть больше примеров и различных параметров, с которыми вам, возможно, придется повозиться.