#dataframe #csv #julia
#фрейм данных #csv #julia
Вопрос:
Я провел один небольшой эксперимент, и я узнал, что это просто потому, что разные типы данных столбцов включены в CSV. пожалуйста, посмотрите следующий код
julia> using DataFrames
julia> df = DataFrame(:a => [1.0, 2, missing, missing, 5.0], :b => [1.1, 2.2, 3, missing, 5],:c => [1,3,5,missing,6])
5×3 DataFrame
│ Row │ a │ b │ c │
│ │ Float64? │ Float64? │ Int64? │
├─────┼──────────┼──────────┼─────────┤
│ 1 │ 1.0 │ 1.1 │ 1 │
│ 2 │ 2.0 │ 2.2 │ 3 │
│ 3 │ missing │ 3.0 │ 5 │
│ 4 │ missing │ missing │ missing │
│ 5 │ 5.0 │ 5.0 │ 6 │
julia> df
5×3 DataFrame
│ Row │ a │ b │ c │
│ │ Float64? │ Float64? │ Int64? │
├─────┼──────────┼──────────┼─────────┤
│ 1 │ 1.0 │ 1.1 │ 1 │
│ 2 │ 2.0 │ 2.2 │ 3 │
│ 3 │ missing │ 3.0 │ 5 │
│ 4 │ missing │ missing │ missing │
│ 5 │ 5.0 │ 5.0 │ 6 │
julia> using Impute
julia> Impute.interp(df)
ERROR: InexactError: Int64(5.5)
Stacktrace:
[1] Int64 at ./float.jl:710 [inlined]
[2] convert at ./number.jl:7 [inlined]
[3] convert at ./missing.jl:69 [inlined]
[4] setindex! at ./array.jl:826 [inlined]
[5] (::Impute.var"#58#59"{Int64,Array{Union{Missing, Int64},1}})(::Impute.Context) at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors/interp.jl:67
[6] (::Impute.Context)(::Impute.var"#58#59"{Int64,Array{Union{Missing, Int64},1}}) at /home/synerzip/.julia/packages/Impute/GmIMg/src/context.jl:227
[7] _impute!(::Array{Union{Missing, Int64},1}, ::Impute.Interpolate) at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors/interp.jl:49
[8] impute!(::Array{Union{Missing, Int64},1}, ::Impute.Interpolate) at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors.jl:84
[9] impute!(::DataFrame, ::Impute.Interpolate) at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors.jl:172
[10] #impute#17 at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors.jl:76 [inlined]
[11] impute at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors.jl:76 [inlined]
[12] _impute(::DataFrame, ::Type{Impute.Interpolate}) at /home/synerzip/.julia/packages/Impute/GmIMg/src/imputors.jl:58
[13] #interp#105 at /home/synerzip/.julia/packages/Impute/GmIMg/src/Impute.jl:84 [inlined]
[14] interp(::DataFrame) at /home/synerzip/.julia/packages/Impute/GmIMg/src/Impute.jl:84
[15] top-level scope at REPL[15]:1
и эта ошибка не возникает при запуске следующего кода
julia> df = DataFrame(:a => [1.0, 2, missing, missing, 5.0], :b => [1.1, 2.2, 3, missing, 5])
5×2 DataFrame
│ Row │ a │ b │
│ │ Float64? │ Float64? │
├─────┼──────────┼──────────┤
│ 1 │ 1.0 │ 1.1 │
│ 2 │ 2.0 │ 2.2 │
│ 3 │ missing │ 3.0 │
│ 4 │ missing │ missing │
│ 5 │ 5.0 │ 5.0 │
julia> Impute.interp(df)
5×2 DataFrame
│ Row │ a │ b │
│ │ Float64? │ Float64? │
├─────┼──────────┼──────────┤
│ 1 │ 1.0 │ 1.1 │
│ 2 │ 2.0 │ 2.2 │
│ 3 │ 3.0 │ 3.0 │
│ 4 │ 4.0 │ 4.0 │
│ 5 │ 5.0 │ 5.0 │
теперь я знаю причину, но не понимаю, как ее решить. Я не могу использовать eltype при чтении CSV, потому что в моем наборе данных содержится 171 столбец, и он обычно имеет либо Int, либо Float. застрял на том, как преобразовать все столбцы в Float64.
Ответ №1:
Я предполагаю, что вы хотите:
- что-то простое, что не обязательно должно быть максимально эффективным
- все ваши столбцы являются числовыми (возможно, с пропущенными значениями)
Затем просто напишите:
julia> df
5×3 DataFrame
│ Row │ a │ b │ c │
│ │ Float64? │ Float64? │ Int64? │
├─────┼──────────┼──────────┼─────────┤
│ 1 │ 1.5 │ 1.65 │ 1 │
│ 2 │ 3.0 │ 3.3 │ 3 │
│ 3 │ missing │ 4.5 │ 5 │
│ 4 │ missing │ missing │ missing │
│ 5 │ 7.5 │ 7.5 │ 6 │
julia> float.(df)
5×3 DataFrame
│ Row │ a │ b │ c │
│ │ Float64? │ Float64? │ Float64? │
├─────┼──────────┼──────────┼──────────┤
│ 1 │ 1.5 │ 1.65 │ 1.0 │
│ 2 │ 3.0 │ 3.3 │ 3.0 │
│ 3 │ missing │ 4.5 │ 5.0 │
│ 4 │ missing │ missing │ missing │
│ 5 │ 7.5 │ 7.5 │ 6.0 │
Можно быть более эффективным (т. Е. преобразовывать только целочисленные столбцы в исходном фрейме данных, но для этого требуется больше кода — пожалуйста, прокомментируйте, если вам нужно такое решение)
Редактировать
Также обратите внимание, что CSV.jl имеет typemap
аргумент ключевого слова, который должен позволить решить эту проблему при чтении данных.