#python #tensorflow #tensorflow-datasets #tf.keras #tensorflow2.0
#python #tensorflow #tensorflow-наборы данных #tf.keras #tensorflow2.0
Вопрос:
Я использую Dataset API для генерации обучающих данных и сортировки их по пакетам для NN.
Вот минимальный рабочий пример моего кода:
import tensorflow as tf
import numpy as np
import random
def my_generator():
while True:
x = np.random.rand(4, 20)
y = random.randint(0, 11)
label = tf.one_hot(y, depth=12)
yield x.reshape(4, 20, 1), label
def my_input_fn():
dataset = tf.data.Dataset.from_generator(lambda: my_generator(),
output_types=(tf.float64, tf.int32))
dataset = dataset.batch(32)
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
return batch_features, batch_labels
if __name__ == "__main__":
tf.enable_eager_execution()
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(4, 20, 1)),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(12, activation=tf.nn.softmax)])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
data_generator = my_input_fn()
model.fit(data_generator)
При model.fit()
вызове TensorFlow 1.13.1 происходит сбой кода со следующей ошибкой:
Traceback (most recent call last):
File "scripts/min_working_example.py", line 37, in <module>
model.fit(data_generator)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 880, in fit
validation_steps=validation_steps)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py", line 310, in model_iteration
ins_batch = slice_arrays(ins[:-1], batch_ids) [ins[-1]]
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/utils/generic_utils.py", line 526, in slice_arrays
return [None if x is None else x[start] for x in arrays]
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/utils/generic_utils.py", line 526, in <listcomp>
return [None if x is None else x[start] for x in arrays]
File "~/.local/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 654, in _slice_helper
name=name)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 820, in strided_slice
shrink_axis_mask=shrink_axis_mask)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 9334, in strided_slice
_six.raise_from(_core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: Attr shrink_axis_mask has value 4294967295 out of range for an int32 [Op:StridedSlice] name: strided_slice/
Я попытался запустить тот же код на другой машине, используя TensorFlow 2.0 (после удаления строки tf.enable_eager_execution()
, потому что он быстро запускается по умолчанию), и я получил следующую ошибку:
Traceback (most recent call last):
File "scripts/min_working_example.py", line 37, in <module>
model.fit(data_generator)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 873, in fit
steps_name='steps_per_epoch')
File "~/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training_arrays.py", line 352, in model_iteration
batch_outs = f(ins_batch)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/keras/backend.py", line 3217, in __call__
outputs = self._graph_fn(*converted_inputs)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 558, in __call__
return self._call_flat(args)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 627, in _call_flat
outputs = self._inference_function.call(ctx, args)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 397, in call
(len(args), len(list(self.signature.input_arg))))
ValueError: Arguments and signature arguments do not match: 21 23
Я попытался изменить model.fit()
на model.fit_generator()
, но это также не удается в обеих версиях TensorFlow. На TF 1.13.1 я получаю следующую ошибку:
Traceback (most recent call last):
File "scripts/min_working_example.py", line 37, in <module>
model.fit_generator(data_generator)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 1426, in fit_generator
initial_epoch=initial_epoch)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_generator.py", line 115, in model_iteration
shuffle=shuffle)
File "~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_generator.py", line 377, in convert_to_generator_like
num_samples = int(nest.flatten(data)[0].shape[0])
TypeError: __int__ returned non-int (type NoneType)
и на TF 2.0 я получаю следующую ошибку:
Traceback (most recent call last):
File "scripts/min_working_example.py", line 37, in <module>
model.fit_generator(data_generator)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 1515, in fit_generator
steps_name='steps_per_epoch')
File "~/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training_generator.py", line 140, in model_iteration
shuffle=shuffle)
File "~/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training_generator.py", line 477, in convert_to_generator_like
raise ValueError('You must specify `batch_size`')
ValueError: You must specify `batch_size`
yet batch_size
не является распознанным ключевым словом для fit_generator()
.
Я озадачен этими сообщениями об ошибках, и я был бы признателен, если кто-нибудь сможет пролить на них некоторый свет или указать, что я делаю неправильно.
Комментарии:
1. Вы можете попробовать
model.fit_generator(dataset, epochs=10, steps_per_epoch=30)
.2. Спасибо, это работает так же хорошо, как и ответ, который я опубликовал ниже.
Ответ №1:
Хотя происхождение ошибок все еще туманно, я нашел решение, которое заставляет код работать. Я опубликую это здесь на случай, если это будет полезно кому-либо в подобной ситуации.
В принципе, я превратил my_input_fn()
в генератор и использовал model.fit_generator()
следующим образом:
import tensorflow as tf
import numpy as np
import random
def my_generator(total_items):
i = 0
while i < total_items:
x = np.random.rand(4, 20)
y = random.randint(0, 11)
label = tf.one_hot(y, depth=12)
yield x.reshape(4, 20, 1), label
i = 1
def my_input_fn(total_items, epochs):
dataset = tf.data.Dataset.from_generator(lambda: my_generator(total_items),
output_types=(tf.float64, tf.int64))
dataset = dataset.repeat(epochs)
dataset = dataset.batch(32)
iterator = dataset.make_one_shot_iterator()
while True:
batch_features, batch_labels = iterator.get_next()
yield batch_features, batch_labels
if __name__ == "__main__":
tf.enable_eager_execution()
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(4, 20, 1)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dense(12, activation=tf.nn.softmax)])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
total_items = 200
batch_size = 32
epochs = 10
num_batches = int(total_items/batch_size)
train_data_generator = my_input_fn(total_items, epochs)
model.fit_generator(generator=train_data_generator, steps_per_epoch=num_batches, epochs=epochs, verbose=1)
Редактировать
Как подразумевается giser_yugang в комментарии, это также возможно сделать с my_input_fn()
помощью функции, возвращающей dataset
вместо отдельных пакетов.
def my_input_fn(total_items, epochs):
dataset = tf.data.Dataset.from_generator(lambda: my_generator(total_items),
output_types=(tf.float64, tf.int64))
dataset = dataset.repeat(epochs)
dataset = dataset.batch(32)
return dataset
if __name__ == "__main__":
tf.enable_eager_execution()
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(4, 20, 1)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dense(12, activation=tf.nn.softmax)])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
total_items = 100
batch_size = 32
epochs = 10
num_batches = int(total_items/batch_size)
dataset = my_input_fn(total_items, epochs)
model.fit_generator(dataset, epochs=epochs, steps_per_epoch=num_batches)
Похоже, что между подходами нет никакой средней разницы в производительности.