#python #machine-learning #time-series
#python #машинное обучение #временные ряды
Вопрос:
Я следую этому руководству по моим данным. https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras /
У меня есть данные Всемирного банка, 15 функций с 1990 года по сегодняшний день, но у меня есть временные ряды из нескольких стран. Приведенное выше руководство работает при наличии большого временного ряда. Как я могу «скомпилировать» данные из разных стран, пока у них все еще одинаковое время, и где мне искать?
Лучшие
import wbdata #pip install wbdata
indicators1 = {"EN.CLC.MDAT.ZS": "Droughts, floods, extreme temperatures (% of population, average 1990-2009)",
"EN.ATM.CO2E.PP.GD":"CO2 emissions (kg per 2011 PPP $ of GDP)",
"NY.GDP.PCAP.PP.KD": "GDP",
"SP.POP.TOTL":"Total Population" ,
"SP.POP.1564.TO.ZS":"16-64 age % Percentage of population",
"LP.LPI.INFR.XQ":"Logistics performance index: Quality of trade and transport-related infrastructure (1=low to 5=high)",
"EG.USE.COMM.FO.ZS":"Fossil fuel energy consumption (% of total)",
"EG.FEC.RNEW.ZS":"Renewable energy consumption (% of total final energy consumption)",
"EG.IMP.CONS.ZS":"Energy imports, net (% of energy use)",
"EN.ATM.METH.KT.CE":"Methane emissions (kt of CO2 equivalent)",
"EN.ATM.CO2E.KT":"CO2 emissions (kt)",
"AG.LND.FRST.ZS":"Forest area (% of land area)",
"EN.ATM.GHGT.KT.CE":"Total greenhouse gas emissions (kt of CO2 equivalent)",
"NE.IMP.GNFS.ZS":"Imports of goods and services (% of GDP)",
"NV.AGR.TOTL.ZS":"Agriculture, forestry, and fishing, value added (% of GDP)",
"NE.EXP.GNFS.ZS":"Exports of goods and services (% of GDP)",
"NY.GDP.PCAP.PP.CD":"GDP per capita, PPP (current international $)",
"EN.ATM.NOXE.KT.CE":"Nitrous oxide emissions (thousand metric tons of CO2 equivalent)"
}
# Store data in pandas. This will download all requested idicators, for all countries
df2 = wbdata.get_dataframe(indicators1, country='all', convert_date=True)
Комментарии:
1. Пожалуйста, предоставьте минимальный набор данных. В вашей ссылке трудно найти конкретно связанный контент.
2. В принципе, я установил модуль wbdata (pip install wbdata). Затем я выполняю следующее:
Ответ №1:
country_info = wbdata.get_country(display=False)
data = {}
for i in range(len(country_info)):
country_id = country_info[i]['id']
try:
df = wbdata.get_dataframe(indicators1, country=country_id)
print ("Retrieved {0} record for country {1}".format(len(df), country_id))
data[country_id] = df
except:
print ("No records for country {0}".format(country_id))
- Получить все коды стран
- Считайте информацию по уровням стран и помещайте ее в словарь данных
Вы также можете создать список всех интересующих вас идентификаторов стран и передать его get_dataframe
в одном вызове.