#tensorflow
#tensorflow
Вопрос:
Я использую следующую модель полиномиальной регрессии. Я запускаю следующий код:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import data_reader
learning_rate = 0.01
training_epochs = 40
freq = {}
freq = data_reader.read('311.csv', 0, '%Y-%m-%d', 2016)
trX = np.array(list(freq.keys())).astype(float)
trY = np.array(list(freq.values())).astype(float)
num_coeffs = 6
plt.scatter(trX, trY)
plt.show()
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
def model(X, w):
terms = []
for i in range(num_coeffs):
term = tf.multiply(w[i], tf.pow(X, i))
terms.append(term)
return tf.add_n(terms)
w = tf.Variable([0.] * num_coeffs, name="parameters")
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op) #execute init_op
y_model = model(X, w)
cost = (tf.pow(Y-y_model, 2))
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for epoch in range(training_epochs):
for (x, y) in zip(trX, trY):
sess.run(train_op, feed_dict={X: x, Y: y})
w_val = sess.run(w)
print(w_val)
sess.close()
Где trX и trY представляют собой массив чисел длиной 52. К сожалению, все параметры w_val являются [nan nan nan nan nan nan nan]. Что я делаю не так?
Спасибо.
Ответ №1:
Я решил путем нормализации (0-1) оси X. Но нужно ли мне его нормализовать?